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Thank you for being here. Today, I will be presenting our work on convergence analysis for Monte Carlo integration that is done in collaboration with Wojciech Jarosz in 
the visual computing lab at Dartmouth.
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Monte Carlo integration is a numerical method employed to solve multi-dimensional integrals that we normally encounter in light transport problems during rendering. We 
are showing one such rendering example here, which is lit with a point light source, as a result…
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… an in-focus pixel has an underlying…



Monte Carlo Integration
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…2D function f(x).
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Monte Carlo Integration
f(~x)

We are interested in computing [CLICK] the integral of this function. In practice, it is not always possible to compute this integral analytically. This is where we sought to 
Monte Carlo integration which involves point sampling…
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Monte Carlo Integration
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…the underlying function, as a result we can represent this integral as a Monte Carlo estimator…
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Monte Carlo Integration
f(~x)
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… where p [CLICK] is the probability density function used to distribute these point samples. This process is highly noise prone and if we look at an out of focus region…
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…which has an underlying 4D integral, it appears to be very noise. One way to reduce this noise is to increase…
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…increase the sample count till the image becomes noise-free (converge). The rate at which this image converges depend on the underlying sampling pattern used. For 
example, with 4D jittered samples, we would obtain a 4D convergence rate of O(N^-1.25) whereas with Poisson disk…
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Poisson Disk

Variance Convergence Rate of Samplers

Pilleboue et al. [2015]

4D Jittered

…O(N�1.25)

… we can obtain less noisy images at small sample count but [CLICK] as we increase the samples the convergence rate obtained is O(N^-1). These convergence rates 
can be empirically computed using the sample variance but recently Pilleboue and Colleagues in [2015] proposed a variance formulation in the Fourier domain, which 
allows to theoretically derive these convergence rates even for blue noise samples. Their work was developed following the work by [CLICK] Fredo Durand and Subr & 
Kautz. 

We will briefly revisit this work first.
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Monte Carlo Estimator
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Fredo Durand [2011]

We start with a Monte Carlo estimator with a unit pdf, which can be written [CLICK] in continuous form using the [CLICK] dirac-delta functions. This integral can be 
rewritten in the [CLICK] following form where S(x) represents the sum of diracs [CLICK] as a sampling function. In this sampling function, x_k [CLICK] represents the 
sample locations shown as these green dots. To represent variance in the Fourier domain, we need the expected power spectrum of these samples. This is computed by 
first… 
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… computing the Power spectrum of the samples, followed by…
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…generating multiple realizations of these samples and their corresponding power spectra. We then take the expectation…
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…of these power spectra to obtain…
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… the expected spectrum. Given the sampling expected power spectrum,…
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…and the integrand f(x) that we are interested to evaluate, if we can compute the power spectrum [CLICK] of f(x), then we can obtain the variance by 

simply [CLICK] taking the integral over the product of these spectra. Pilleboue and colleagues [CLICK] extended this formulation to different samplers using 
homogenization. They rewrote this formulation…
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…in polar coordinates, as a double integral where the inner integral [CLICK] is over all the directions and the outer integral is over all the [CLICK] radial frequencies. They 
simplified this formulation further for isotropic sampling spectra [CLICK] which has the same energy in all directions for a given radial frequency. As a result, the sampling 
spectrum does not depend on directions, and we can safely take it out of the inner integral…
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Var(IN ) =
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0

…in polar coordinates, where the inner integral [CLICK] is over all the directions and the outer integral is over all the radial frequencies. They simplified this formulation 
further for [CLICK] isotropic sampling spectra [CLICK] which has the same energy in all directions for a given radial frequency,. As a result, the sampling spectrum does 
not depend on directions, and we can safely take it out of the inner integral…
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…for any one direction. Now, The integral [CLICK] over the integrand spectrum can be rewritten…
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…  as a radial average over all the directions, which results in a…
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…1D radial function. This allowed Pilleboue and colleagues to represent variance as 1D integral just over the radial frequencies. They used this formulation to derive 
convergence rates…
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Pilleboue et al. [2015]
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…of different samplers [CLICK], including random, poisson disk and CCVT. This was done under the assumption that the sampling spectra are [CLICK] isotropic. In 
practice, however, the samplers that we use are highly anisotropic in nature. For example,..
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Latin Hypercube Sampler (N-rooks)

…a Latin hypercube sampler, that uses well 1D stratified samples, which are then randomly permuted to form [CLICK] 2D samples, has an…
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…a Latin hypercube sampler, that uses well 1D stratified samples, which are then randomly permuted to form [CLICK] 2D samples, has an…
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Initialize

Latin Hypercube Sampler (N-rooks)
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Shuffle rows

Latin Hypercube Sampler (N-rooks)

…a Latin hypercube sampler, that uses well 1D stratified samples, which are then randomly permuted to form [CLICK] 2D samples, has an…
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Latin Hypercube Sampler (N-rooks)

…a Latin hypercube sampler, that uses well 1D stratified samples, which are then randomly permuted to form [CLICK] 2D samples, has an…
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Latin Hypercube Sampler (N-rooks)
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Anisotropic Sampling Power Spectra

N-rooks / 
Latin Hypercube

N-rooks  
Spectrum

… anisotropic power spectrum with hairline structures visible as a dark cross in the middle.  These hairline anisotropies are there due to the denser stratification along the 
X…
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Anisotropic Sampling Power Spectra

… anisotropic power spectrum with a dark cross in the middle.  These hairline anisotropies are there due to the denser stratification along the X…
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N-rooks / 
Latin Hypercube
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Spectrum

Anisotropic Sampling Power Spectra

…and the Y-axis. It is also possible to directly obtain good 2D stratified samples…
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N-rooks / 
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Spectrum

Anisotropic Sampling Power Spectra

…which has a power spectrum [CLICK] with a dark region around the center. Chiu and colleagues, optimized these samples…
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Anisotropic Sampling Power Spectra
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N-rooks / 
Latin Hypercube Multi-JitterN-rooks  

Spectrum
Multi-Jitter 
Spectrum

Anisotropic Sampling Power Spectra

Chiu et al. [1993]

…to obtain denser stratification…



35

N-rooks / 
Latin Hypercube Multi-jitterN-rooks  
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Multi-Jitter 
Spectrum

Anisotropic Sampling Power Spectra

Chiu et al. [1993]

…along the horizontal…
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N-rooks / 
Latin Hypercube Multi-jitterN-rooks  

Spectrum

Anisotropic Sampling Power Spectra

Multi-Jitter 
Spectrum

Chiu et al. [1993]

…and vertical axis, on top of 2D stratification, which results in multi-jittered samples with a hairline anisotropy along the canonical axes that is visible as a cross in the 
middle of it’s spectrum. The same ideas extend to…
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…to higher dimensions. For example, in 4D…
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Rob Cook [1986]
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4D Sampling

…instead of directly sampling the full 4D space, Rob Cook in [1986] proposed to sample [CLICK] the lower 2D subspaces first, UV and XY here, and then randomly 
permute these 2D samples to form [CLICK] 4D tuples, which can then be used to evaluate an underlying 4D integrand. In practice…
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4D Sampling

…rendering systems tend to use jittered samples on these 2D subspaces. It is, however, beneficial to use…
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…power spectrum in these 2D projections, it has hairline anisotropy along the [CLICK] canonical axes on top of the [CLICK] big dark region that corresponds to 2D 
jittered sampling. However, If we look at the XU projection…
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…power spectrum in these 2D projections, it has hairline anisotropy along the [CLICK] canonical axes on top of the [CLICK] big dark region that corresponds to 2D 
jittered sampling. However, If we look at the XU projection…
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…power spectrum in these 2D projections, it has hairline anisotropy along the [CLICK] canonical axes on top of the [CLICK] big dark region that corresponds to 2D 
jittered sampling. However, If we look at the XU projection…
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…to higher dimensions. For example, in 4D…
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…for N-rooks sampler as a product of sampling and integrand spectra. As before, we rewrite this formulation in polar coordinates…
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…as a double integral. By switching the order of the integration…
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…the inner integral now represents the integration over the radial frequencies…
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… for a given k-th direction. Since the outer integral…
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… is over all the directions, using Reimann summation, we can rewrite the outer integral…
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…as a summation over an infinite directional cones. After slight rearrangement, we obtain the variance formulation…
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…as a summation over an infinite directional cones. After slight rearrangement, we obtain the variance formulation…
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Variance Formulation for Anisotropic Sampling Spectra

… for anisotropic samplers. One thing to note about this formulation is that, the inner integral…
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…considers the radial behavior of both the sampling and the integrand spectra for a given k-th direction, which when [CLICK] added up for all the directional cones, gives 
the variance.  This shows that, unlike previous work, our formulation not only [CLICK] handles anisotropic sampling spectra but also intimately couples the anisotropic 
structures present in the integrand spectrum with that of the sampling spectrum. We will see shortly how this impacts the convergence rate but first, lets analyze the 
anisotropic structures of N-rooks spectrum more closely.
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Power Spectrum Radial Power Spectrum

Convergence Analysis for Anisotropic Sampling Spectra

N-rooks power spectrum has [CLICK] jittered radial profile along the canonical axes, and [CLICK] a constant radial profile along all other directions. For the convergence 
rate, we only need…
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… one of the canonical direction (shown in purple) and one of the direction from the rest of the spectrum (shown in green) since the behavior is the same in all other 
directions. Now, depending on the integrands…
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…we can get different convergence rates from the same sampler. For example, the step function in magenta box has [CLICK] a power spectrum with all its energy along 
the horizontal axis. As a result, only the horizontal axis [CLICK]  with jittered profile would overlap with the integrand spectrum and will result in a convergence rate of 
[CLICK] O(N^-2). Since the other directions doesn't overlap with this integrand spectrum, they won’t [CLICK] impact the convergence behavior. 

However, if we have an integrand with a [CLICK] power spectrum having energy along all the directions, we may see [CLICK] two different convergence behavior in its 
variance plot as we go toward higher sample count. However, asymptotically only the worse of the two would dominate, and we will see a convergence rate of O(N^-1). 
To understand this mathematically, lets look at the variance formulation, which is the product…
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… of N-rooks sampling spectrum and the integrand spectrum. Due to the dark hairline anisotropy [CLICK] present in the sampling spectrum, their [CLICK] product goes 
down very quickly, resulting in huge variance reduction and good asymptotic convergence. However, for the second pixel…
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… since the integrand spectrum has energy spread over all the directions,  the [CLICK] hairline anisotropy of the sampling spectrum [CLICK] does not significantly reduce 
the product, resulting in higher variance. We further verified this..
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…experimentally, where we plot variance with increasing sample count. This shows that if we can align the anisotropic structures of the sampling spectrum Ps with that 
of the integrand spectrum Pf, we can gain huge variance reductions, as shown with the magenta curve. But in most scenarios…
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Non-Axis Aligned Integrand Spectra
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…the underlying integrand spectrum has arbitrary orientation. If we choose to sample this function…
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Multi-jittered Samples

Non-Axis Aligned Integrand Spectra
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…with multi-jittered samples which has [CLICK] the following power spectrum, we won’t be able to benefit from these hairline anisotropic structures since they are axis-
aligned. To solve this issue, we propose to shear…
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Shearing Multi-Jittered Samples
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Sheared Samples Sheared Spectrum Integrand Spectrum
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…the samples in such a way that we can align the sampling spectrum with that of the integrand spectrum. But, the key question here is…
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How can we determine the 
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Sheared Spectrum

…how can we determine these shear parameters ? The answer to this question requires some preprocessing to know the frequency content of the integrand. Therefore, 
we propose the following steps.



Our Algorithm
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In the first step, we 

[CLICK] leverage the light transport frequency analysis, developed over more than a decade, to create an oracle that can give us the shear parameters of the integrand 
spectrum.

[CLICK] We then use these shear parameters given by the oracle to shear the samples.

[CLICK] After that, we use these sheared samples to perform Monte Carlo Integration. 

Lets go over this algorithm starting from the….
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Our Algorithm
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1) Develop an oracle using the Frequency Analysis of Light Transport

2) Use this oracle to shear the samples

3) Perform Monte Carlo integration using the sheared samples
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…frequency analysis of light transport. In 2005,…



Related Work
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• Frequency Analysis of Light Transport Durand et al. [2005]  

Durand and colleagues proposed a Fourier domain framework to study the light transport. Later on, [CLICK] this analysis was leveraged for depth of field, motion blur, 
soft shadows, ambient occlusion and many other effects. [CLICK] All this previous work has been extensively…
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• Depth of Field Soler et al. [2009]      

• Motion Blur Egan et al. [2009]   

• Ambient Occlusion Egan et al. [2011] and more…

Durand and colleagues proposed a Fourier domain framework to study the light transport. Later on, [CLICK] this analysis was leveraged for depth of field, motion blur, 
soft shadows, ambient occlusion and many other effects. [CLICK] All this previous work has been extensively…
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Reconstruction
• Frequency Analysis of Light Transport Durand et al. [2005]   

• Depth of Field Soler et al. [2009]      

• Motion Blur Egan et al. [2009]   

• Ambient Occlusion Egan et al. [2011] and more…

…used for reconstruction purposes. In this work [CLICK], we leverage the light transport frequency analysis [CLICK] for Integration purposes. We demonstrate our 
approach for a depth of field setup but our algorithm directly applies to other distribution effects like motion blur. In our setup… 
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Our Work

Reconstruction
• Frequency Analysis of Light Transport Durand et al. [2005]   

• Depth of Field Soler et al. [2009]      

• Motion Blur Egan et al. [2009]   

• Ambient Occlusion Egan et al. [2011] and more…



Related Work

68

Our Work

Reconstruction

Integration

• Frequency Analysis of Light Transport Durand et al. [2005]   

• Depth of Field Soler et al. [2009]      

• Motion Blur Egan et al. [2009]   

• Ambient Occlusion Egan et al. [2011] and more…
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…we have a virtual image plane XY and a square aperture UV to simplify the analysis. We render a cornell box scene…
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…with a defocus blur. Objects in this cornell box are placed at an increasing depth from your view point. Lets look at [CLICK] one pixel of this image [CLICK] which has 
[CLICK] the following underlying texture, and see how the light field is changing. To simplify the setup, we consider a 1D aperture…
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… and visualize this pixel…
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… on this virtual image plane as we move along the aperture. The underlying textures shifts…
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… as we go from left to right on this 1D aperture. This shifting in the XY plane results in…
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…a shear in the XU projection. Note that, if we have an in-focus pixel…
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…a shear in the XU projection. Note that, if we have an in-focus pixel…



76

X

Depth of Field Analysis

U

Durand et al. [2005]

XU Slices

…the XU projection will not show any variation along the U-axis. As a result, the corresponding Fourier power spectrum…
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… would have all its energy only along the horizontal axis. But as we go far from the focal plane…
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…we observe a shear in the light field.
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…we observe a shear in the light field.
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…we observe a shear in the light field.
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This increase…



Light Field gets Sheared
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…in shear with objects depth can be easily represented in a mathematical form [CLICK] using the following equation, where [CLICK] F is the focal distance and [CLICK] d 
is the object depth. 

This shows that it is enough to know the depth for each pixel to compute the shear, given we already know the focal distance. Our oracle gives us the depth per pixel 
which we then use to shear the samples. Note that, given the different projections in this 4D light field…
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Shear increases with object depth
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…shearing happens only in the [CLICK] XU and YV projections, as shown in the bottom row. This means, we only need to shear the samples…
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…shearing happens only in the [CLICK] XU and YV projections, as shown in the bottom row. This means, we only need to shear the samples…
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…in the XU and YV projections. Now that we know the shear parameters, we can apply this shear to a real rendering to analyze the benefits.



Variance & Convergence Analysis  
with Sheared Samples
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…variance and convergence rates. We consider the same cornell box scene…
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Cornell Box Scene

…with defocus blur. Since the scene is lit with a point light source, the out of focus pixels, for example, the [CLICK] one on the back wall, will have an underlying 4D 
function which has the following [CLICK] sheared integrand spectrum in the XU projection. If we sample the underlying 4D function with an uncorrelated-multijittered 
samples…
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…we get a cross in the XU projection of the sampling spectrum. Since this cross is not aligned with the integrand spectrum, it won’t help in variance reduction. 
Consequently, we see a convergence rate of (N^-1) for this pixel. 

However, if we shear the samples…
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…to align the sampling spectrum with the integrand spectrum, we observe a 2D convergence of (N^-1.5) for this 4D integral. However, this is not true for all pixels. There 
are some pixels which show…
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…improvement only in variance after shearing. For example, the following pixel shows 10X improvement in variance but only at a high sample count. Note that, this idea 
of shearing is not limited to stochastic samples. We apply this idea to deterministic samplers like…
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…halton and sobol and observe similar improvements in variance and convergence rates. One thing you may have noticed here is that the improvements are visible after 
a large sample count. This happens due to the…



Challenging Cases: XU & YV Projections
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…these very thin hairline anisotropic structures in the sampling spectra. These hairline anisotropic structures are only useful [CLICK] when we have hairline structures in 
the integrand spectrum, for which we can shear…
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…the sampling spectrum to get benefits. However, even this alignment heavily depends [CLICK] on the accuracy of the oracle that provides the shear parameters. On the 
other hand, it is also very common to have pixels with a lot of occluders which results in a frequency footprint of a [CLICK] double wedge spectrum. The existing 
samplers are not even close to handle these double wedge structures [CLICK] due to the presence of only hairline anisotropies. 

To handle these cases, our analysis suggests that…
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…where a desired sampling spectrum can have wider anisotropic structures in all the projections, that can greatly improve convergence rates and can also promise huge 
variance reduction. For pixels with a double-wedge…
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Design Principles for New Sampling Patterns

Integrand Spectrum Desired Sampling Spectra

… shaped spectrum, it could also be interesting to create  sampling patterns that matches the wedge shaped target spectrum. With this I would like to conclude my talk 
and I will be happy to take any questions you may have. Thank you..



Thank you for your attention!
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