

Convergence Analysis for Anisotropic Monte Carlo Sampling Spectra

Gurprit Singh

SIGGRAPH2017

AT THE

Wojciech Jarosz

 Image: Constraint of the second se

 $f(\vec{x})$

 $d\vec{x}$ J_0

 $f(\vec{x})$

 $l\vec{x}$ Τ J_0 0 \ /

 $f(\vec{x})$

 \mathbf{N} I_N = $N \underset{k=1}{\swarrow} p(\vec{x}_k)$

Variance

Variance Convergence Rate of Samplers

4D Jittered

Number of Samples

Variance Convergence Rate of Samplers

Fredo Durand [2011] Subr & Kautz [2013] Pilleboue et al. [2015]

4D JitteredPoisson Disk

Number of Samples

Monte Carlo Estimator

 $I_N = \frac{1}{N} \sum_{k=1}^{N} f(\vec{x}_k) = \int_0^1 \frac{1}{N} \sum_{k=1}^{N} \delta(\vec{x} - \vec{x}_k) f(\vec{x}) \, d\vec{x} = \int_0^1 \frac{S_N(\vec{x}) f(\vec{x}) \, d\vec{x}}{\sqrt{N}}$

Fredo Durand [2011]

Samples Power Spectrum

$$S_N(\vec{x}) = \frac{1}{N} \sum_{k=1}^N \delta(\vec{x} - \vec{x}_k)$$

 $I_N = \int_0^1 S_N(\vec{x}) f(\vec{x}) \, d\vec{x}$

Spectrum

$$\mathcal{P}_{S_N}(\nu) = \left| \frac{1}{N} \sum_{k=1}^N e^{-i2\pi\nu \cdot \vec{x}_k} \right|^2$$

Expected Sampling Power Spectra

Spectrum

$$\mathcal{P}_{S_N}(\nu) = \left| \frac{1}{N} \sum_{k=1}^N e^{-i2\pi\nu \cdot \vec{x}_k} \right|^2$$

Expected Sampling Power Spectra

Expected Sampling Power Spectra

 $I_N = \int_0^1 S_N(\vec{x}) f(\vec{x}) \, d\vec{x}$

Expected Spectrum

$$\left\langle \mathcal{P}_{S_N}(\nu) \right\rangle = \left\langle \left| \frac{1}{N} \sum_{k=1}^N e^{-i2\pi\nu \cdot \vec{x}_k} \right|^2 \right\rangle$$

Variance of Monte Carlo Estimator

X

 $\left\langle \mathcal{P}_{S_N}(\nu) \right\rangle$

 $\operatorname{Var}(I_N) =$

 $\mathcal{P}_f(\nu)$

 $d\nu$

Fredo Durand [2011] Subr & Kautz [2013] Pilleboue et al. [2015]

Variance of Monte Carlo Estimator in **Polar Coordinates**

 \times

 $d\mathbf{n} d\rho$

 $ilde{\mathcal{P}}_{S_N}(
ho)$

 $\tilde{\mathcal{P}}_{S_N}(\rho)$

 $\mathcal{P}_f(\rho \mathbf{n})$

 $\tilde{\mathcal{P}}_{S_N}(\rho)$

 $\mathcal{P}_f(\rho)$

 $ilde{\mathcal{P}}_{{S}_N}\!(
ho)$

$$\operatorname{Var}(I_N) = \int_0^\infty \rho^{d-1}$$

$\int_{0} \rho^{d-1}$		X		d ho	
		_		Isotropic Spectrum Poisson Disk	
Samplers	Worst Case	Best Case			
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(\Lambda$	(-1)		
Poisson Disk	$\mathcal{O}(N^{-1})$	$\mathcal{O}(\Lambda$	(-1)		
CCVT	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(\Lambda$	$7^{-3})$	Pilleboue et al. [20	

 $\mathcal{P}_f(
ho)$

Initialize

Shuffle rows

Shuffle columns

N-rooks / Latin Hypercube

N-rooks Spectrum

N-rooks / Latin Hypercube

Spectrum

N-rooks / Latin Hypercube

N-rooks Spectrum

N-rooks / Latin Hypercube

N-rooks Spectrum

Jitter

Jitter Spectrum

N-rooks / Latin Hypercube

N-rooks Spectrum

Multi-Jitter

Multi-Jitter Spectrum

Chiu et al. [1993]

N-rooks / Latin Hypercube

N-rooks Spectrum

Multi-jitter

Multi-Jitter Spectrum

Chiu et al. [1993]

N-rooks / Latin Hypercube

N-rooks Spectrum

Multi-jitter

Multi-Jitter Spectrum

Chiu et al. [1993]

Sampling in Higher Dimensions

4D Sampling 2D 2D (u_1, v_1) (x_1, y_1) (u_2, v_2) $[x_2, y_2]$ (u_3, v_3) (x_3, y_3) (u_4, v_4) (x_4, y_4) 4D (x_1, y_1, u_3, v_3) (x_2, y_2, u_1, v_1) (x_3, y_3, u_4, v_4) (x_4, y_4, u_2, v_2)

4D Sampling 2D 2D (u_1, v_1) (x_1, y_1) (u_2, v_2) (x_2, y_2) (u_3, v_3) (x_3, y_3) (u_4, v_4) (x_4, y_4) 4D (x_1, y_1, u_3, v_3) (x_2, y_2, u_1, v_1) (x_3, y_3, u_4, v_4) (x_4, y_4, u_2, v_2)

4D Sampling 2D 2D (u_1, v_1) (x_1, y_1) (u_2, v_2) (x_2, y_2) (u_3, v_3) (x_3, y_3) (u_4, v_4) (x_4, y_4) 4D (x_1, y_1, u_3, v_3) (x_2, y_2, u_1, v_1) (x_3, y_3, u_4, v_4) (x_4, y_4, u_2, v_2) 40

4D Sampling Spectra along Projections

4D Sampling Spectra along Projections

42

4D Sampling Spectra along Projections

How can we perform Convergence Analysis for Anisotropic Sampling Spectra?

X

 $\left\langle \mathcal{P}_{S_N}(\nu) \right\rangle$

N-rooks spectrum

 $\mathcal{P}_f(\nu)$

 $d\nu$

Integrand spectrum $f(\vec{x})$

 $\left< \mathcal{P}_{S_N}(\rho \mathbf{n}) \right>$

 $\operatorname{Var}(I_N) = \int_{\mathcal{S}^{d-1}} \int_0^\infty \rho^{d-1}$

$$\operatorname{Var}(I_N) = \lim_{m \to \infty} \sum_{k=1}^m \int_0^\infty \rho^{d-1} \left\langle \mathcal{P}_{S_N}(\rho^{d-1}) \right\rangle d\rho^{d-1}$$

$\left(\rho_k \mathbf{n_k}\right) \times \mathcal{P}_f(\rho_k \mathbf{n_k}) \quad d\rho \,\Delta \mathbf{n_k}$

$$\operatorname{Var}(I_N) = \lim_{m \to \infty} \sum_{k=1}^m \int_0^\infty \rho$$

 $\rho^{d-1}\langle \mathcal{P}_{S_N}(\rho_k \mathbf{n}_k) \rangle \mathcal{P}_f(\rho_k \mathbf{n}_k) d\rho \Delta \mathbf{n}_k$

Power Spectrum

Power

Power

Power Spectrum

Power

Power

Convergence Analysis for Anisotropic Sampling Spectra

N-rooks spectrum

N-rooks spectrum

$$d\nu = \int_{\Omega}$$

Variance Convergence of Latin Hypercube (N-rooks)

Pixel B

Non-Axis Aligned Integrand Spectra

 $\mathcal{P}_f(
u)$

Non-Axis Aligned Integrand Spectra

Multi-jittered Samples

 $\left\langle \mathcal{P}_{S_N}(\nu) \right\rangle$

 $\mathcal{P}_f(\nu)$

Sampling Spectrum

Shearing Multi-Jittered Samples

Sheared Samples

 $\left\langle \mathcal{P}_{S_N}(\nu) \right\rangle$

Sheared Spectrum

How can we determine the sample shearing parameters ?

Sheared Samples

 $\left\langle \mathcal{P}_{S_N}(\nu) \right\rangle$

 $\mathcal{P}_f(\nu)$

Sheared Spectrum

Our Algorithm

2) Use this oracle to shear the samples 3) Perform Monte Carlo integration using the sheared samples

- 1) Develop an oracle using the Frequency Analysis of Light Transport

Frequency Analysis of Light Transport

Related Work

- Frequency Analysis of Light Transport Durand et al. [2005]
- Depth of Field Soler et al. [2009]
- Motion Blur Egan et al. [2009]
- Ambient Occlusion Egan et al. [2011] and more...

Related Work

- Frequency Analysis of Light Transport Durand et al. [2005]
- Depth of Field Soler et al. [2009]
- Motion Blur Egan et al. [2009]
- Ambient Occlusion Egan et al. [2011] and more...

Related Work

- Frequency Analysis of Light Transport Durand et al. [2005]
- Depth of Field Soler et al. [2009]
- Motion Blur Egan et al. [2009]

Reconstruction

• Ambient Occlusion Egan et al. [2011] and more...

Our Work

Integration

focal plane / virtual image plane

Y

1D Aperture

IJ

focal plane / virtual image plane

Y

Х

XU Slices

U

XU Slices

U

U

Х

XU Slices

Depth of Field Analysis Ray space

Spatial Fourier

X XU Slices

Depth of Field AnalysisRay spaceSpatialFourier

x XU Slices

Depth of Field AnalysisRay spaceSpatialFourier

X XU Slices

Depth of Field Analysis Ray space

Spatial

Fourier

X XU Slices

Depth of Field Analysis Ray space

Spatial Fourier

X XU Slices

$x = x + u \frac{F - d}{d}$, F: focal distance Shear increases of pthobs to be drepthops by the set of the set of

Light Field gets Sheared

Integrand

Uncorrelated Multi-jittered

XY

Spectra along Different Projections

Integrand

Uncorrelated Multi-jittered

Spectra along Different Projections

XU

ntegrand

Uncorrelated Multi-jittered

Spectra along Different Projections

ХU

Variance & Convergence Analysis with Sheared Samples

Cornell Box Scene XU Projection

 $\int_x \int_y \int_u \int_v f(x, y, u, v) \, dv \, du \, dy \, dx$

Original Uncorrelated-MultiJittered Samples 10⁻² **10**⁻⁵ Variance U 10⁻⁸ 10⁻¹¹ Integrand Spectrum **Original Samples 10**⁶ **10**⁴ **10**⁵ 10 100 1000 Number of Samples

XU Projection

XU Subspace

XU Subspace

Variance improvement after Shearing

Challenging Cases: XU & YV Projections

Hairline Anisotropy

Sampling XU Spectrum

Pixel A XU Spectrum

Challenging Cases: XU & YV Projections

Hairline Anisotropy

Sampling XU Spectrum

Pixel A XU Spectrum

Oracle Accuracy

Pixel B Sampling XU Spectrum XU Spectrum

Double-wedge Spectrum

Design Principles for New Sampling Patterns

Multi-Jittered Spectra Desired Sampling Spectra

XU

Design Principles for New Sampling Patterns

Integrand Spectrum

In both XU and YV Projections

Desired Sampling Spectra

Thank you for your attention!

