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Abstract. We propose a novel framework for detecting, quantifying and visu-
alizing changes between two snapshots of a dynamic network. Unlike existing
approaches, which can be sensitive to minor and isolated changes, and are of-
ten based on heuristics, we show how a theoretically-justified, inherently multi-
scale notion of change, or distortion, can be defined and computed using spec-
tral graph-theoretic tools. Our primary observation is that informative, robust and
multi-scale measures of change can be obtained by computing a real-valued func-
tion (which we call the distortion function) on the nodes of the input graph, via
the optimization of a pre-defined distortion energy in a provably optimal way.
Based on extensive tests on a wide variety of networks, we demonstrate the abil-
ity of our approach to highlight the evolution of the network in an informative
and multi-scale manner.
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1 Introduction

Many real-world evolving systems can be conveniently encoded as dynamic graphs
(e.g., biological networks, where the connectivity can represent the evolution of pro-
tein interactions or collaboration networks, where new links and nodes are added over
time [1,2,24]). A key challenge in the visualization and analysis of dynamic networks is
capturing the structural changes in the graph in a robust and efficient way. In particular,
a fundamental problem is to define principled measures of change or difference between
graphs that can be used to highlight the modified regions, while not being sensitive to
noise. Unfortunately, in many cases these two objectives are contradictory, especially
in the presence of large networks with many structural changes, where simple measures
result in highly noisy highlighted regions that are difficult to interpret. In this context,
several methods [13,15,16] have been proposed to produce informative summaries of
dynamic graphs. However, as discussed in Section 3, they typically suffer from the lack
of precise control over the type of changes that are considered and the scale at which
they are computed, e.g., local changes of individual vertices vs. global distortions to
the structure of entire regions in the graph. Furthermore, these existing techniques typ-
ically do not allow to capture and highlight only the primary areas of change, and can
result in cluttered visualizations. Finally, most existing methods are based on heuris-
tics and often lack formal guarantees of global optimality. In this paper, we propose an
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efficient, flexible and multi-scale framework for detecting and analyzing changes in dy-
namic graphs, in the online setting, where only the current and the previous timestamp
information are known. Given a pair of graphs, our framework is based on defining and
computing an optimal node distortion function, which associates to each vertex a real
value that quantifies the change associated with this vertex across the two graphs (with
higher values corresponding to larger changes). We use the term distortion to emphasize
the fact that our function should measure the most dramatic changes in graph structure,
at a given scale. To this end, we leverage concepts from spectral graph theory to both
ensure robustness against noise (i.e. disparate and unrelated, local changes), by control-
ling the scale at which the changes are computed, and provide theoretical guarantees on
the global optimality of the highlighted changes.

1.1 Related Work

The problem of capturing changes in dynamic graphs has recently attracted a lot of
attention and a variety of different techniques have been proposed, including the use
of animation (time-to-time mapping) or timeline (time-to-space mapping) methods (see
[4], for a taxonomy of methods for dynamic graph visualization).

Network visualization. Many existing works [6,7,10,11,13,15,26,25] make use of a
large variety of different graph drawing techniques in order to update the layout while
preserving the mental map, which is considered as the main requirement to facilitate
graph exploration [3]. For instance, two interesting approaches combine the notion of
vertex ages [15] and node pinning weights [13] with force-directed layouts to produce
visualizations of dynamic graphs: the main idea consists to reduce node displacement
via a mechanism based on the associated distortion at a vertex. Spectral methods, which
have been used for graph visualization for several decades [18,19], have recently been
adapted to deal with dynamic networks [6,10,26]. While one approach is to extend the
classic spectral layout to the case of dynamic graphs [6], another possible use of spectral
methods is in the layout post-processing [10,26,27] that can be combined with arbitrary
static layouts.

Distorted Region Detection. There are relatively few works, in the context of network
visualization that consider the problem of detecting and highlighting the regions with
the most relevant changes and evolution. A notable exception is [16], where the authors
address this problem by introducing a measure of relevance for vertices and weighted
edges (called strength), and makes use of a threshold filtering based on a sliding time-
window in order to efficiently visualize the most relevant evolving regions in the graph.
Detecting relevant regions is a crucial ingredient that can be combined with other tools
for the visualization of large networks [17].

Our Contribution. Our work is inspired by previous techniques [13,15,16] that define
various distortion measures aimed at capturing changes between graphs. These dis-
tortion measures are then combined either with force-directed methods [14] for graph
visualization, or integrated in detecting most distorted regions. In context of the former,
a distortion function allows controlling the displacement of vertices by manipulating
the forces acting on them, while in the latter it can be used to filter vertices by, e.g.,
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thresholding their values. The main distinguishing characteristics of our framework is
that it provides precise control over both the type of distortions and the scale at which
changes are computed, with theoretical optimality guarantees for the computed distor-
tion function. None of the existing methods enable these features in a single coherent
framework.

2 Proposed Framework

Preliminaries: A dynamic network is defined by a sequence of graphs {G1, . . . ,GT}
where Gi = (Vi,Ei) represents a snapshot at time i.

As in previous works [10,11,25,13,15,16,26], we assume that we are given the cor-
respondence between nodes in two consecutive snapshots. The nodes and edges of each
Gi are allowed to be associated with positive weights: we denote by di(u),wi(u,v) the
weight of vertex u and of edge (u,v) in Gi, respectively. In the simplest case, di(u) is the
degree of vertex u in Gi, and, for unweighted graphs, wi(u,v)= 1 if (u,v)∈Ei and 0 oth-
erwise. We then define a diagonal matrix Di, s.t. Di(u,u) = di(u) and a symmetric ma-
trix Wi, s.t. Wi(u,v) = wi(u,v) = wi(v,u). Finally, we define the weighted Laplacian ma-
trix LGi as: LGi =Ui−Wi, where Ui is a diagonal matrix, s.t. Ui(u,u) = ∑v wi(u,v). Our
framework aims at detecting the structural changes between two instances Gi and Gi+1
of a dynamic network (graph) by computing a distortion function f : Vi −→ R, such
that f (v) should: 1) quantify the changes at vertex v between Gi and Gi+1, with higher
values corresponding to larger changes and f (v) = 0 corresponding to no changes, 2)
be multi-scale to reflect changes in the neighborhood of v at any given scale, 3) be
efficiently computable in practice. The second property is especially important to de-
tect and highlight evolving regions in graphs and to gain resilience to noisy, dispersed
changes throughout the graph.

General overview: To compute the distortion function that satisfies the above three cri-
teria, we first define a distortion energy E(Gi,Gi+1, f ) that assigns a scalar score to an
arbitrary real-valued function f : Vi −→R. We then construct a multi-scale family F of
functions. Finally, we compute the optimal distortion function fopt which corresponds
to the maximizer of E(Gi,Gi+1, f ) for given Gi,Gi+1, and s.t. f lies within the family F
(see Fig. 1 for an illustration). We then use fopt to visualize the changes across Gi,Gi+1,
by color-coding the vertices, and to detect the most distorted regions as described in
Section 3. Our motivation for adopting this pipeline is that it allows us to 1) precisely
control the types of changes the approach should be sensitive to via the choice of dis-
tortion energy, 2) control the scale of the computed changes via the choice of family
F and 3) provide theoretical guarantees, making sure that the computed maximizer of
E(Gi,Gi+1, f ) is globally optimal.

2.1 Distortion Energies

The main considerations when choosing a distortion energy are first to ensure that it is
sensitive to the changes that are meaningful in the context of the evolution of Gi and sec-
ond, it should be easy to optimize, so that computing the maximizer f of E(Gi,Gi+1, f )
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Fig. 1: Algorithm overview: given a graph and its modification, (removed edges are
marked in red), we first construct a set of basis functions, then pick a distortion energy
and compute its maximizers in the linear span of the basis. Finally, we compute the
optimal distortion function that smoothly reflects the changes at each vertex from very
high (in red) to least affected vertices (in blue).

w.r.t. f can be done efficiently in practice. To this end, we consider the following two
distortion energies (notations from Sec. 2):

Evertex diff(Gi,Gi+1, f ) =
∑u f (u)2(di(u)−di+1(u))2

∑u f (u)2di(u)
,

Eedge diff(Gi,Gi+1, f ) =
∑u,v( f (u)− f (v))2(wi(u,v)−wi+1(u,v))2

∑u f (u)2di(u)
.

(1)

Intuitively, these two energies, Evertex diff and Eedge diff, are sensitive to the absolute
changes (increase or decrease) of the weights of the vertices and the edges, respectively.
These energies associate a scalar score to any real-valued function f , which can then be
used to find the optimal distortion function by computing fopt = argmax f E(Gi,Gi+1, f ).
In each case, E(Gi,Gi+1, f ) is large when f is supported on the regions where these
weights change the most. Note also that both Evertex diff( f ), and Eedge diff( f ) are defined
such that the change is scaled by the vertex weight di(u) in the denominator. This is
because a single edge addition or deletion is typically less important for a vertex with
a large weight (or degree) than for a vertex with a small weight. However, this choice
might also be application-specific. If this normalization is not necessary, it can easily
be removed from all of the derivations below.

2.2 Choice of Scale via Reduced Functional Space

After selecting a distortion energy E(Gi,Gi+1, f ) our goal is to find the optimal dis-
tortion function fopt by maximizing E for given Gi,Gi+1. Moreover, as mentioned in
Section 2, we would like to be able to control the scale of the solution, in order to gain
robustness to disparate, possibly noisy local changes, and to detect the areas or regions
where the most important changes occur.

Thus, instead of maximizing E(Gi,Gi+1, f ) across all choices of f , we propose
to consider the function f that lies in the appropriate functional subspace. More con-
cretely, we enforce the function f to lie in the linear subspace spanned by some “desir-
able” functions ϕ , i.e., we force: f = ∑

k
j=1 a jϕ j where ϕ j are some k fixed pre-defined

functions, i.e., ϕ j : Vi −→R and a j are the unknown scalar coefficients. This way, com-
puting the optimal f amounts to finding the coefficients {ak} such that E(Gi,Gi+1, f ) =
E(Gi,Gi+1,∑ j a jϕ j) is maximized.
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In practice, we control the scale of the solution via the choice of k, which corre-
sponds to the dimensionality of the functional space. A small value of k corresponds to
global scale as it enforces f to be chosen in the space spanned by a small set (of poten-
tially globally supported) functions, whereas larger values of k provide more freedom
for selecting the optimal distortion function f . In the limit, when k equals the number
of vertices in the graph, and ϕ are linearly independent, then f can be chosen to be an
arbitrary function, including an indicator function of a single vertex. In this paper, we
consider the following two families of functions:

Option 1: Region-based functions. Perhaps the most intuitive choice of a functional
family corresponds to simply taking ϕ j to represent indicator (characteristic) functions
of some regions on the graph Gi. In the simplest case, each such function can represent
a neighborhood of some fixed vertex, of a given size. More precisely, given a partition
of the vertex set Vi into k distinct regions {R1,R2, . . . ,Rk} we define ϕ j : Vi −→ [0,1]
as the indicator function of R j: ϕ j(u) = 1 if u ∈ R j, and ϕ j(u) = 0 otherwise. We can
also incorporate a distance-to-modification behavior by simply defining ϕ j(u) = 1 if
u ∈ R j and u has a modified neighborhood, and ϕ j(u) = h(dist(u)) where dist(u) is
the distance from u to the closest modification and h : {0,1, . . .n− 1} → [0,1] is a
decreasing function provided by the user (we define h(dist(u)) = 1/(1+dist(u)) in the
experiments reported in Section 3). In practice we use the partitions computed by the
Louvain algorithm [5], which is a hierarchical method for community detection based
on modularity optimization. Such a clustering method is especially appropriate in our
setting since it provides a resolution parameter that controls the desired level in the
clustering hierarchy, which naturally corresponds to the scale at which we analyze the
graph.

Option 2: Laplacian eigen-basis. We consider as basis the eigenfunctions associated
with the k smallest eigenvalues of the generalized eigenvalue problem:

LGiϕ = λDGiϕ (2)

where LGi is the Laplacian matrix of Gi and DGi is the diagonal matrix of vertex weights.
We choose this basis because the eigenfunctions of the Laplacian naturally have a multi-
scale property, which intuitively corresponds to the equivalent of Fourier bases and
which has been used extensively in the context of signal processing on graphs [23]. In
our context, remark that each ϕ j is associated with a non-negative eigenvalue λ j ≥ 0
(since LGi and DGi are symmetric positive semi-definite). Moreover, a simple calcula-
tion shows that for any f = ∑

k
j=1 a jϕ j

f T LGi f
f T DGi f

=
∑u,v( f (u)− f (v))2wi(u,v)

∑u f (u)2di(u)
≤ λk (3)

Now, the quantity ∑u,v( f (u)− f (v))2wi(u,v) can naturally be interpreted as the smooth-
ness of the function, since it captures the sum of the squared differences of f along the
edges of the graph. This means that if a function f lies in the span of the eigenfunc-
tions corresponding to the k smallest eigenvalues of the problem in Eq. (2), then the
smoothness of f , as defined in Eq. (3), is bounded by λk.



6 Luca Castelli Aleardi et al.

Note that for a connected graph, when k = 1, then f must be a constant function,
since λ1 = 0, and ϕ1 must be constant. Conversely, if k = n then f can be an arbitrary
function, since ϕ are linearly independent. Thus, we interpret k as controlling the scale
of the solution, where small k corresponds to global scale (very smooth functions),
and large k corresponds to local scale (possibly arbitrarily irregular, or concentrated
functions).

2.3 An Algorithm to Compute the Spectral Distortion

We can now design a simple procedure for computing the optimal distortion function,
where all steps can be expressed in terms of linear algebraic computations. Assuming
we want to maximize the energy Er(Gi,Gi+1, f ), we compute the optimal distortion
function fopt with the following three steps:

1. Choose the value for the parameter k and compute the family F at that scale.
For example, when using the Laplacian basis, compute the k smallest eigenvalues
λ1, . . . ,λk and the corresponding eigenfunctions ϕ1, . . . ,ϕk of the problem LGiϕ =
λDGiϕ . Store these functions as columns of the matrix Φk.

2. Given the matrix Φk and an energy Er, compute the optimum function fopt :=
argmax f∈span(Φk)Er(Gi,Gi+1, f ). For this, we compute a solution of the eigenprob-

lem: maxσ Si+1ξ = σξ where the matrix Si+1 (of size k× k) is given as:

Evertex diff : Si+1 := (Φk)T (DGi −DGi+1)
2Φk

Eedge diff : Si+1 := (Φk)T L−Gi,Gi+1
Φk (4)

Here the diagonal matrices D and the Laplacian matrices L follow the definitions
given in the beginning of Section 2, and the matrix L− is defined such that L−(u,v)=
−(wi(u,v)−wi+1(u,v))2, and L−(u,u) = ∑v(wi(u,v)−wi+1(u,v))2.

3. Finally, the optimal distortion function corresponds to the eigenvector ξmax (having
size k) associated with the largest eigenvalue σmax of the eigenproblem from step
2. The function f on the vertices of Gi can be computed via the matrix product:
fopt = Φkξmax.

The correctness of the algorithm above for computing the optimal distortion function is
ensured by the following Lemma (the proof is provided in [8]):

Lemma 1. The algorithm described in the three steps above is guaranteed to result
in a distortion function that maximizes the given energy, while remaining within the
subspace spanned by the eigenfunctions Φk.

Note that the pipeline above is designed to compute a single optimal distortion
function fopt at the given scale k. In practice, this typically corresponds to detecting a
single most distorted area or region of the graph. In order to compute the top p most
distorted regions, it can be convenient to consider more than one eigenvector of Si+1 in
step 3 above. In this case we take the linear combination of the squares of eigenvectors
corresponding to the p largest eigenvalues of Si+1 described in step 2. In other words
we compute: fopt = ∑ j≤p σ j(f j[u])2, where we define f j = Φkξ j and σ j is the jth largest
eigenvalue of Si+1. Finally we normalize fopt to have values between 0 and 1.
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Fig. 2: (Left) Network evolution: the red (resp. green) segments represent the removed
(resp. added) edges in a single time step. (Columns 2-5) Qualitative comparison be-
tween the distortion measures δDM (distance-to-modification), δVA (vertex age) and δV S
(vertex strength) with our spectral distortion.

Key parameters: The key parameters in our framework include: the choice of the basis,
the distortion energy function, the choice of scale or smoothness parameter k, and the
choice of p corresponding to the number of largest eigenvalues, related to the number
of highest-distorted parts that are considered.

3 Experimental evaluation

We provide an experimental evaluation of our spectral distortion (denoted δSP) and
compare it to other approaches proposed in the visualization of dynamic graphs.

Choice of the energy. Remark that the choice of energy is application specific. For
example, if the network evolution is primarily controlled by change in vertex degrees (or
weights), then Evertex diff is more appropriate. This happens, in particular, if the evolution
contains only edge additions or removals but not both. Since this is the case for the
datasets we consider below, we only present results using Evertex diff. We also report
in [8] experimental results for the energy Eedge diff, that is more suitable for graphs
evolving under both edge removals and additions.

Datasets. We perform tests on dynamic networks having different structural properties
and evolution behavior: as in most existing works [10,11,13,15], all of these graphs are
undirected and unweighted.
Real-world networks. We consider real-world networks from the SuiteSparse Matrix
Collection [12] (3elt, dwt307, etc.). As in [13] we construct a dynamic sequence of
networks with a simple process based on a random edge decimation.
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Fig. 3: Threshold filtering approach: in the pictures above we highlight a fraction ρ of
vertices with highest distortion. In the charts below we plot the structural properties and
the region relevance of each filtered graph as a function of ρ .

Complex networks. We consider a sequence of networks (also evaluated in [11]) ex-
tracted from the Facebook-Growth dataset 4: this dataset spans an interval from
Sep. 2006 to Jan. 2009. We also deal with snapshots of the interaction network analyzed
in [9] (referred to as SG), where edges describe the face-to-face proximity between indi-
viduals visiting the Science Gallery in Dublin. Both networks evolves under a dynamic
process where new entities/links are added over time. More extensive experiments in-
cluding other networks can be found in [8].

Baselines. We compare our approach to three other notions of distortion: distance-
to-modification, vertex age and vertex strength distortions based on the methods pro-
posed in [13], [15] and [16], respectively. The distance-to-modification distortion is the
function δDM(u) : V → [0,1] defined by δDM(u) = h(dist(u)) where h is a decreasing
function, and dist(u) is the graph distance between u and the closest modification in

4The raw data is available at https://www.eecs.wsu.edu/∼yyao/StreamingGraphs.html

https://www.eecs.wsu.edu/~yyao/StreamingGraphs.html
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Fig. 4: Dynamic growth of the Facebook network: we compare distortion functions
evaluating the evolution of structural properties over the first ten days from Sep. 5 to
Sep. 15 2006. The pictures above show the graph filtered using spectral distortion over
four time steps. All pictures and plots are obtained setting ρ = 0.1.

the graph. More precisely, following [13] we define δDM(u) = 1−α(1− dist(u)
Rc ) where α

(scale parameter) and Rc (cutoff distance) are user-supplied parameters. To better dis-
tinguish between major and minor changes Gorochowski et al. [15] introduced an age
function age(u, i) that quantifies the amount of changes for vertex u at time i (see [15]
for the definition). We then take a vertex age distortion δVA(u) = e−βage(u,i), where
β ∈ R+ is a user supplied parameter. Finally, we define the distortion δV S based on
the notion of vertex strength following the approach proposed in [16], that integrates
vertex degrees and makes use of an exponential sliding time-window (we normalize to
get values in [0,1]). For the sake of completeness a detailed definition of age(u, i) and
δV S can be found in [8].

Evaluation: Region extraction. We evaluate different distortion measures by their abil-
ity to highlight relevant regions of the graph that undergo the biggest changes. Thus, we
use each measure to first extract the regions on the graph as follows:
Approach 1: threshold filtering. In the simplest case, we simply keep a small fraction
ρ ∈ [0,1] of the vertices having the largest distortion: as suggested in [16], we compute
the subgraph induced by non isolated vertices, containing at most ρ|Vi+1| vertices (see
Figure 3 for an illustration).
Approach 2: BFS traversal. One drawback of the previous approach is that it can result
in many disconnected regions, especially when the network evolution is dramatic. To
counter this, we also use each distortion function to perform a BFS traversal (vertices
with large distortion are visited first) starting from some initial seed vertex, which guar-
antees a single connected region (whose size is denoted Nr). This process is repeated
taking as seeds a fraction ρ of vertices with largest distortion.
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Fig. 5: Region extraction approach based on BFS traversal. (left) for each distortion
function (and for a fixed value of Nr), we highlight the average region extracted for the
SG network. (right) plots of the average region relevance (higher is better).

Region quality. We evaluate the extracted regions according to several measures of
quality: first, as suggested in [16] we measure the structural properties (e.g. average
vertex degree, average clustering coefficient, diameter, number of connected compo-
nents) of the extracted regions: for instance, higher values of the average node degree
(or 1/#connected components) are better, as they correspond to filtered regions which
are locally more dense and less fragmented. Second, we evaluate the total number of
edge modifications (additions or deletions) involving vertices that lie in a region, re-
ferred to as region relevance (higher values are better).

3.1 Experimental comparison and discussion

Qualitative comparison. In our first evaluation we plot the distortion functions obtained
by different methods across several datasets in Fig. 2. In all our examples we use
the heat map color-scale representing distortion values in the range [0 . . .maxu∈V δ (u)],
from blue to green to red. As can be seen in Fig. 2, previous methods can be either
too sensitive, highlighting a large portion of the graph (e.g., in the case of the δDM
distortion) or fail to distinguish regions or parts of the graph that undergo the changes
(in the case of the δVA distortion for the SG, for example).

On the other hand, our method is precise and at the same time captures the regions
that undergo the most changes in a multi-scale manner.

Filtering. The layouts and plots of Fig. 3 show that the regions detected with our spec-
tral approach do not lead to dramatic fluctuations of the main structural properties: the
filtered vertices are likely to define connected subgraphs, whose structural properties
vary in a smooth way, even for small values of ρ . This does not hold for basic distor-
tion measures (especially δDM and δVA), that lead to highly disconnected and sparse
sub-graphs, and more drastic fluctuations of structural properties, not being able to dis-
tinguish the most relevant changes from local noise. Observe that our spectral approach
offers to the user the capability of choosing the parameters k and p in order to reach
the right scale (tuning k) and only keep the highest distorted regions (tuning p). This
feature helps the user to select, depending on the application and desirable goals, the re-
gions with the most relevant evolution, while discarding local irrelevant noisy changes
(see layouts and plots of region relevance in Fig. 3 and Fig. 5): even for small value
of ρ , the spectral distortion allows us to correctly highlight the most relevant changed
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regions, while δDM , δVA and δV S lead to much more dispersion, not being able to dis-
carding noisy modifications. Observe that as ρ increases, the capability of δDM , δVA and
δV S distortions to capture modifications also increases (see the plot of region relevance
in Fig. 3). Above a given threshold the total amount of changes captured by spectral
distortion does not increase significantly since irrelevant local changes are ignored: this
is the unavoidable price to pay for keeping the filtered graph fragmented as little as
possible.

The plots of Fig. 4 show the evolution of structural properties over the first ten
days of the Facebook network sequence (all results and layouts are obtained setting
ρ = 0.1): the spectral distortion always captures a larger amount of modifications, while
leading in overall to a smoother transition of the filtered graphs, which are more dense
and locally connected, between consecutive time steps.

Runtime performance. The most time-consuming step in the calculation of our spectral
distortions (Sec. 2.3) is the computation of the basis; steps (2) and (3) have a negligible
cost as they involve simple algebraic matrix operations (of size k× k and k× n, with
k� n). A more detailed discussion can be found in [8].

4 Conclusion, Limitations and Future Work
We propose a novel, multi-scale framework for robustly detecting and visualizing dy-
namic changes in networks across two different time stamps (Gi and Gi+1). However, it
is possible to integrate a time term in the computation of spectral distortion, that would
take into account a full sequence G1,G2, ...,Gi+1 (as done in [15,16]). Our framework
described in Section 2.1, although illustrated on unweighted graphs, is rather general
and allows to consider graphs with both edge and vertex weights. It could be inter-
esting to consider other operators than the Laplacian, which are more adapted to deal
with the large-scale structure of sparse networks [20,22]. As further application, it could
interesting to see whether our approach could apply to the problem of detecting change-
points [21] and temporal anomalies in evolving networks.
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