Sampling Analysis using Correlations for Monte Carlo Rendering

Cengiz Öztireli Gurprit Singh

Point Patterns in Computer Graphics

Random distributions of points with characteristics Fundamental for many applications in graphics

Geometry Processing

Fabrication

Non-photorealistic Rendering

Rendering - Computing Integrals

Estimating Integrals with Points

Sample and sum the sampled values of an integrand

$$I := \frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} f(\mathbf{x}) d\mathbf{x}$$

$$\hat{I} := \sum_{i=1}^{n} w_i f(\mathbf{x}_i)$$

$$bias_{\mathcal{P}}[\hat{I}] = I - \mathbb{E}_{\mathcal{P}}[\hat{I}]$$

$$var_{\mathcal{P}}[\hat{I}] = \mathbb{E}_{\mathcal{P}}[\hat{I}^2] - (\mathbb{E}_{\mathcal{P}}[\hat{I}])^2$$

Stochastic Point Processes

Formal characterization of point patterns

Stochastic Point Processes

Formal characterization of point patterns

Stochastic Point Processes

Examples of point processes

Natural Process

Manuel Process

General Point Processes

Infinite point processes

General Point Processes

Assign a random variable to each set

 $N(\mathcal{B}) = 3$

 $N(\mathcal{B}) = 5$

 $(\mathcal{B}) = 2$

General Point Processes

Joint probabilities define the point process

 $p_{N(\mathcal{B}_1),N(\mathcal{B}_2)}$

Correlations as probabilities

First order product density

$$\varrho^{(1)}(\mathbf{x}) = \lambda(\mathbf{x})$$

Expected number of points around **x**Measures local density

First order product density

First order product density

Second order product density

$$\varrho^{(2)}(\mathbf{x}, \mathbf{y}) = \varrho(\mathbf{x}, \mathbf{y})$$

 $\varrho^{(2)}(\mathbf{x}, \mathbf{y}) = \varrho(\mathbf{x}, \mathbf{y})$ Expected number of points around $\mathbf{x} \& \mathbf{y}$

Measures the joint probability $p(\mathbf{x}, \mathbf{y})$

Higher order product density?

Expected number of points around x, y, z

Not necessary: second order dogma

Higher order not necessary: second order dogma

$$\varrho^{(1)}(\mathbf{x}) = \lambda(\mathbf{x})$$

$$\varrho^{(2)}(\mathbf{x}, \mathbf{y}) = \varrho(\mathbf{x}, \mathbf{y})$$

Summary: 1st & 2nd order correlations sufficient

$$\varrho^{(1)}(\mathbf{x}) = \lambda(\mathbf{x})$$
 $\varrho^{(2)}(\mathbf{x}, \mathbf{y}) = \varrho(\mathbf{x}, \mathbf{y})$

Example: homogenous Poisson point process a.k.a. random sampling

$$p(\mathbf{x}) = p \qquad p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x})p(\mathbf{y})$$

$$\lambda(\mathbf{x})dV = p \qquad p(\mathbf{x}, \mathbf{y}) = \varrho(\mathbf{x}, \mathbf{y})dV_xdV_y$$

$$\lambda(\mathbf{x}) = \lambda \qquad = p(\mathbf{x})p(\mathbf{y})$$

$$= \lambda(\mathbf{x})dV_x\lambda(\mathbf{y})dV_y$$

$$\varrho(\mathbf{x}, \mathbf{y}) = \lambda(\mathbf{x})\lambda(\mathbf{y}) = \lambda^2$$

Summary: 1st & 2nd order correlations sufficient

$$\varrho^{(1)}(\mathbf{x}) = \lambda(\mathbf{x})$$
 $\varrho^{(2)}(\mathbf{x}, \mathbf{y}) = \varrho(\mathbf{x}, \mathbf{y})$

Stationary Point Processes

Stationary (translation invariant)

Isotropic (translation & rotation invariant)

Stationary Point Processes

Stationary (translation invariant)

Stationary Point Processes

Isotropic point process (translation & rotation invariant)

Campbell's Theorem

$$\mathbb{E}_{\mathcal{P}}\left[\sum f(\mathbf{x}_i)\right] = \int_{\mathbb{R}^d} f(\mathbf{x}) \lambda(\mathbf{x}) d\mathbf{x}$$

$$\mathbb{E}_{\mathcal{P}}\left[\sum_{i \neq j} f(\mathbf{x}_i, \mathbf{x}_j)
ight] = \int_{\mathbb{R}^d imes \mathbb{R}^d} f(\mathbf{x}, \mathbf{y}) \varrho(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}$$

First order $\lambda(\mathbf{x})$

$$\mathbb{E}_{\mathcal{P}}\left[\sum \mathbb{I}_{\mathcal{D}}(\mathbf{x}_i)\right] = \mathbb{E}_{\mathcal{P}}\left[\sum_{\mathbf{x}_i \in \mathcal{D}} 1\right]$$

$$= \int_{\mathcal{D}} \lambda d\mathbf{x} = \lambda \int_{\mathcal{D}} d\mathbf{x} = \lambda |\mathcal{D}|$$

$$rac{N_k(\mathcal{D})}{|\mathcal{D}|}$$

Second order stationary - pair correlation function (PCF)

$$\mathbb{E}_{\mathcal{D}}\left[\sum \delta(\mathbf{r} - (\mathbf{x}_i - \mathbf{x}_i))\right]$$

$$\mathbb{E}_{\mathcal{P}}\left[\sum_{i
eq j} \delta(\mathbf{r} - (\mathbf{x}_i - \mathbf{x}_j))
ight]$$

$$= \int_{\mathbb{R}^d \times \mathbb{R}^d} \delta(\mathbf{r} - (\mathbf{x} - \mathbf{y})) \varrho(\mathbf{x} - \mathbf{y}) d\mathbf{x} d\mathbf{y}$$

$$= \int_{\mathbb{R}^d \times \mathbb{R}^d} \delta(\mathbf{r} - (\mathbf{x} - \mathbf{y})) \varrho(\mathbf{x} - \mathbf{y}) d\mathbf{x} d\mathbf{y}$$

$$= \lambda^2 \int_{\mathbb{R}^d \times \mathbb{R}^d} \delta(\mathbf{r} - (\mathbf{x} - \mathbf{y})) g(\mathbf{x} - \mathbf{y}) d\mathbf{x} d\mathbf{y} = \lambda^2 g(\mathbf{r})$$

$$=\int_{-\infty}^{\infty} \delta(\mathbf{r} - (\mathbf{x} - \mathbf{y})) \varrho(\mathbf{x} - \mathbf{y})$$

Second order stationary - pair correlation function (PCF)

$$\hat{g}(\mathbf{r}) = \frac{1}{K\lambda^2} \sum_{\mathcal{P}_k} \sum_{\mathbf{x}_i, \mathbf{x}_j \in \mathcal{P}_k, i \neq j} \delta(\mathbf{r} - (\mathbf{x}_i - \mathbf{x}_j))$$

Finite domains:

$$\hat{g}(\mathbf{r}) = \frac{1}{K\lambda^2 a_{\mathbb{I}_{\mathcal{D}}}(\mathbf{r})} \sum_{\mathcal{P}_k} \sum_{\mathbf{x}_i, \mathbf{x}_j \in \mathcal{P}_k, i \neq j} \delta(\mathbf{r} - (\mathbf{x}_i - \mathbf{x}_j))$$

Second order stationary - pair correlation function (PCF)

Point Distribution

Second order isotropic - pair correlation function (PCF)

$$\hat{g}(r) = \frac{1}{\lambda^2 r^{d-1} |\mathcal{S}_d|} \sum_{i \neq j} k(r - \|\mathbf{x}_i - \mathbf{x}_j\|)$$
 Volume of the unit hypercube in d dimensions e.g. Gaussian

Spectral Statistics

Spectral Statistics

$$P(\boldsymbol{\nu}) = \lambda G(\boldsymbol{\nu}) + 1$$

Points	PCF	Power spectrum

Spectral Statistics

$$P(\nu) = \lambda G(\nu) + 1$$

Power spectrum

Radial average

Radial anisotropy

Statistics for Stationary Processes

Summary

Stationary: Spatial (PCF) & spectral (power spectrum)

Isotropic: radial averages