
Deep Point Correlation Design

THOMAS LEIMKÜHLER,MPI Informatik, Saarland Informatics Campus
GURPRIT SINGH,MPI Informatik, Saarland Informatics Campus
KAROL MYSZKOWSKI,MPI Informatik, Saarland Informatics Campus
HANS-PETER SEIDEL,MPI Informatik, Saarland Informatics Campus
TOBIAS RITSCHEL, University College London

l1(radSpec(X)- BNOT)+
l1(spec(x(X))- STEP)

D
es

ig
n

sp
ec

i�
ca

tio
n

Result spectra Target spectra

10,000 10D points / s

MC rendering Object placement

N
eu

ra
l n

et
w

or
k

A
pp

lic
at

io
ns

1D 2D 1D 2D

Dithering

Po
in

t p
at

te
rn

Fig. 1. We suggest a framework for designing correlated point patterns. A design specification (left) is used to train an architecture mapping random points to
correlated ones (middle). This architecture produces ten-thousands of points per second with use in rendering, object placement or dithering (right).

Designing point patterns with desired properties can require substantial
effort, both in hand-crafting coding and mathematical derivation. Retaining
these properties in multiple dimensions or for a substantial number of points
can be challenging and computationally expensive. Tackling those two issues,
we suggest to automatically generate scalable point patterns from design
goals using deep learning. We phrase pattern generation as a deep compo-
sition of weighted distance-based unstructured filters. Deep point pattern
designmeans to optimize over the space of all such compositions according to
a user-provided point correlation loss, a small program which measures a pat-
tern’s fidelity in respect to its spatial or spectral statistics, linear or non-linear
(e. g., radial) projections, or any arbitrary combination thereof. Our analysis
shows that we can emulate a large set of existing patterns (blue, green, step,
projective, stair, etc.-noise), generalize them to countless new combinations
in a systematic way and leverage existing error estimation formulations to
generate novel point patterns for a user-provided class of integrand functions.
Our point patterns scale favorably to multiple dimensions and numbers of
points: we demonstrate nearly 10 k points in 10-D produced in one second
on one GPU. All the resources (source code and the pre-trained networks)
can be found at https://sampling.mpi-inf.mpg.de/deepsampling.html.

CCS Concepts: • Computing methodologies → Neural networks.

Additional Key Words and Phrases: Stochastic Sampling; Blue noise; Opti-
mization; Deep learning

Authors’ addresses: Thomas Leimkühler, MPI Informatik, Saarland Informatics Campus,
tleimkueh@mpi-inf.mpg.de; Gurprit Singh, MPI Informatik, Saarland Informatics Cam-
pus, gsingh@mpi-inf.mpg.de; Karol Myszkowski, MPI Informatik, Saarland Informatics
Campus; Hans-Peter Seidel, MPI Informatik, Saarland Informatics Campus; Tobias
Ritschel, University College London.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/11-ART226 $15.00
https://doi.org/10.1145/3355089.3356562

ACM Reference Format:
Thomas Leimkühler, Gurprit Singh, Karol Myszkowski, Hans-Peter Seidel,
and Tobias Ritschel. 2019. Deep Point Correlation Design. ACM Trans. Graph.
38, 6, Article 226 (November 2019), 17 pages. https://doi.org/10.1145/3355089.
3356562

1 INTRODUCTION
Point patterns have many important uses in computer graphics,
linking apparently disparate topics such as natural placement of
procedural plants, accurately casting shadows from an area light
or arranging artistic stipples in a visually pleasing fashion. Many
classic algorithms have been proposed to generate point patterns
e. g., Lloyd’s [1982] relaxation algorithm, dart throwing [McCool
and Fiume 1992] or deterministic methods [Niederreiter 1992]. Their
properties are analyzed in terms of low discrepancy [Shirley 1991],
spectra [Yellott 1983], differentials [Öztireli and Gross 2012; Wei and
Wang 2011] and their use in Monte Carlo (MC) and Quasi Monte
Carlo (QMC) integration [Cook 1986; Keller et al. 2012; Öztireli 2016;
Pilleboue et al. 2015; Subr and Kautz 2013].

Designing methods to provide the desired pattern quality for dif-
ferent applications is an active topic of research [De Goes et al. 2012;
Fattal 2011; Heck et al. 2013; Kailkhura et al. 2016; Wei and Wang
2011; Zhou et al. 2012]. Devising such point patterns typically re-
quires complex mathematical derivations which are only applicable
in specific conditions, implementation effort, and finally compute
time in order to run an optimization which produces a point set.

In this paper, we add a new level of abstraction and suggest to use
modern deep learning to optimize over the space of point pattern
generation methods itself. Instead of mathematical derivation, a user
of our system provides a straightforward implementation of the
desired properties in form of a loss (code in Fig. 1) demanding e. g.,
“a blue noise (BN) spectrum both in 2D and 1D (along the x axis)”.
We then optimize over the learnable parameters of a deep pipeline
of recursive and unstructured filters which map uncorrelated to

ACM Trans. Graph., Vol. 38, No. 6, Article 226. Publication date: November 2019.

https://sampling.mpi-inf.mpg.de/deepsampling.html
https://doi.org/10.1145/3355089.3356562
https://doi.org/10.1145/3355089.3356562
https://doi.org/10.1145/3355089.3356562

226:2 • Thomas Leimkühler, Gurprit Singh, Karol Myszkowski, Hans-Peter Seidel, and Tobias Ritschel

correlated point patterns. Notably, we learn this weakly supervised,
without observing any instances of the desired point patterns –
some of the patterns we produce are not known how to produce
– but directly from a description of the desired properties alone.
The pipeline is deep, so that several steps of correction (typical
ca. 40) can occur and communicate. We use filters based on distance
measured in subspaces which allows both scaling tomultiple (i. e., up
to 10-D) dimensions but also supporting anisotropy that can achieve
different characteristics in different subspaces. Our unstructured
filters support sparse point sets, as a dense kernel representation
would not scale to multiple dimensions. After learning has finished,
producing points at deployment does only require running the
resulting recursive massively parallel filters and no optimization.
In summary the contributions made in this paper are:

• A parallel method to generate point patterns using tunable,
recursive and unstructured filtering in multiple dimensions.

• A method to learn these filters from prescribed design goals
alone, without mathematical derivation or coding.

• Novel point patterns such as multi-dimensional isotropic BN,
and mixed forms of BN in multiple dimensions and subspaces.

• MC estimation of the radially-averaged spectra that allows
for analysis and optimization in higher dimensions.

• Learningwell-suited sampling patterns for a class of functions
matching diverse computer graphics tasks.

2 POINT PATTERNS IN COMPUTER GRAPHICS
Point patterns can be quite useful for many computer graphics tasks.
Which point pattern, however, is most suited for solving a specific
task is an active topic of research. We will here quickly review
different properties of point patterns (refer to [Yan et al. 2015] for a
recent in-depth survey) before relating to the machine learning and
domain-specific language background relevant for this work.

2.1 Correlated Patterns
Blue noise. Yellot [1983] first noted that the receptors on the retina

are neither regular nor random but follow very specific patterns
where they keep a minimal distance. These patterns are routinely
characterized by their expected power spectrum [Lagae and Dutre
2008; Ulichney 1988]. For two or more dimensions, the full spectrum
is often further radially averaged to a one-dimensional subspace. The
variance of this radial estimate is called the radial anisotropy which
is low for radially symmetric (isotropic) patterns and large for others.
We use these quantities as a loss for our trainable architecture.

Power spectra are frequently characterized by their “colors”. A
blue noise (BN) pattern has a power spectrum with little energy in
the low-frequency region. BN was first used in graphics for dither-
ing [Ulichney 1988] and stippling [Oliver et al. 2001; Secord 2002].
Classic ways to produce BN patterns are dart throwing [McCool
and Fiume 1992] and Lloyd relaxation [Lloyd 1982]. The first can
be slow, while the latter often suffers from regularity artifacts, that
need extra effort to be overcome [Balzer et al. 2009; Claici et al.
2018; De Goes et al. 2012]. As in the context of dithering, models
of human perception can be used to improve quality [Mulligan and
Ahumada 1992]. BN patterns are also used for MC integration-based
image synthesis, as they shift the error into the high-frequency

bands, to which humans are less sensitive [Cook 1986] and signals
contain less energy [Mandelbrot 1983]. This low frequency region
also directly affects the variance and its convergence during MC
estimation [Singh et al. 2019b]. Besides BN, other colors of noise
are useful in tasks such as simulating physical and biological distri-
butions [Condit et al. 2000].
Heck et al. [2013] were the first to address oscillations in the

power spectrum. Kailkhura et al. [2016] suggest to add a stair to the
spectrum to widen its zero-region. Our method can generate both
step and stair spectra as targets.

Methods that generate point patterns with desired spectrum exist
[Heck et al. 2013; Kailkhura et al. 2016; Wei and Wang 2011; Zhou
et al. 2012] but operate on a different level of abstraction: Output of
those methods are point patterns, while the output of ours is a point
generation method. Consequently, their methods need to be run
every time when a point pattern is produced, while we only opti-
mize during training and execute learned filters to actually produce
patterns in the deployed software. We shift the time-consuming op-
timization over point patterns at run-time into an abstract learning
pre-process that optimizes over point pattern generation methods.

There also exists approaches that generate blue noise using dart
throwing [Lagae and Dutre 2008; McCool and Fiume 1992] or max-
min distance. In such a pattern, the minimal distance from one point
to the others is maximized over all points i. e., all points keep a
minimal distance. Many technical alternatives have been consid-
ered to produce blue noise patterns such as variational [Chen et al.
2012], optimal transport [Claici et al. 2018; De Goes et al. 2012; Qin
et al. 2017], tiling [Ostromoukhov et al. 2004; Wachtel et al. 2014],
Wang tiles [Kopf et al. 2006], kernel-density estimation [Fattal 2011],
smooth particle hydro-dynamics [Jiang et al. 2015] or electrostatics
[Schmaltz et al. 2010]. Mitchell et al. [2018] suggested methods to
produce BN point sets in multiple dimensions using spoke-darts,
including saturation. All these methods include involved mathemat-
ical derivations that are specific for isolated point set properties and
do not generalize over higher dimensions, while often incurring
significant computational costs. Our approach scales to multiple
dimensions for a substantial number of points and for a variety of
target spectra, including BN, by simply specifying a loss function.

Spatial statistics. As an alternative to Fourier analysis, we also
allow losses using histograms of point distances (the differential
domain) [Bowers et al. 2010; Wei and Wang 2011] or pair correlation
[Öztireli and Gross 2012], which are flexible to analyze non-uniform
point patterns. Our formalism is free to mix and match both differen-
tial representations and spectra as well as the anisotropic properties.
As always, power comes with responsibility, asking the user to
choose adequate weighting when combining multiple goals.

Low discrepancy. Deterministic (QMC) approaches emphasize
point placement to ensure low discrepancy [Niederreiter 1978].
These methods are specifically tailored for numerical integration.
Our architecture allows sample generation for multi-purpose tasks
including numerical integration and object placement. We do not
directly optimize for low discrepancy but provide comparisons
with Sobol [1967], Halton [1960], rank-1 [Niederreiter 1992] and
Fibonacci lattices [Nuyens 2013; Sloan and Joe 1994] to show im-
provements in certain cases.

ACM Trans. Graph., Vol. 38, No. 6, Article 226. Publication date: November 2019.

Deep Point Correlation Design • 226:3

2.2 Subspaces
Several methods try to explicitly produce patterns with desired
spectra also in their projections. Chiu et al. [1994] propose well-
stratification in both 1D and 2D. Jarosz et al. [2019] extended these
stratification using orthogonal array-based construction [Hedayat
et al. 1999] that preserves stratification across multiple projections.
Reinert et al. [2016] produce n-D BN patterns which have BN prop-
erties in low-dimensional projections as well. These approaches
result in a typical cross-like spectrum. Singh and Jarosz [2017] show
convergence improvements by aligning these cross-like subspace
spectra with the integrands’ spectra using shearing. Production
renderers [Kulla et al. 2018] also notice improvements when mixed
subspaces are properly handled. Joe and Kuo [2008] improve upon
Sobol sequences that may have poor 2D projections. Ahmed et al.
[2016] suggest producing 2D patterns that have both BN and low-
discrepancy properties. Perrier et al. [2018] enhance Sobol 2D projec-
tions with BN properties by improving Owen’s [1997] scrambling.
Overall, the relation between blue noise, low-discrepancy and

variance reduction in MC integration is not fully clear [Christensen
et al. 2018; Dobkin et al. 1996; Mitchell 1992; Shirley 1991]. It is
evident, however, that there are methods that produce a low error,
yet produce a more suspicious artifact pattern and that there are
other approaches that produce visually pleasing patterns but a high
error [Georgiev and Fajardo 2016].

While we do not look into low-discrepancy explicitly [Doerr and
De Rainville 2013], our subspace construction allows to achieve
a key property of low-discrepancy patterns: their projections are
well-behaved, too. This can manifest as a low variance when using
them as sample points in MC integration as shown in our analysis.

2.3 Learning
Computer graphics and in particular filtering recently sees a push
towards a learning-based paradigm, where, instead of implementing
algorithms from first principles and mathematical derivations, data
is used to optimize a general architecture in a learning phase to
perform a task in the deployment phase.
In particular for inverse problems, this idea has led to ground-

breaking achievements [Krizhevsky et al. 2012]. Typically in these
convolutional neural networks (CNNs), optimization is performed
over the space of image convolution kernels. The term “deep” refers
to the fact that convolutions are linear operations, followed by non-
linearities and stacked in a complex pipeline. Stochastic gradient
descent (SGD) is able to perform this non-linear optimization even
for very deep pipelines made of simple operations. SGD works
in batches, where only a stochastic subset of the training data is
used. As our training data comprises of infinitely many sets of
random points, working in batches is mandatory. We also use a
CNN, but require filters more advanced than simple 3×3 masks used
in image processing. Early, Fattal et al. [2011] optimized pyramids
of convolutions to also solve tasks such as Poisson integration.
A popular methodology is supervised learning: Here, images la-

beled as “cat” or “dog” are provided and a cascade of filters is tuned
to produce accurate class labels for each image. Such an approach
is regrettably limited by the availability of (human) supervision. In
our case, we do not even attempt to build a supervised system that

is trained on a list of curated examples patterns but proceed in a
semi-supervised fashion [Zhou 2017]: we do provide supervision,
but in an abstract form that does not enforce an answer, but lists
constraints such as spectral quality, that need to hold for a solution.
Rendering is a key application of point patterns, where deep

learning has been used for relighting [Ren et al. 2015], screen-space
shading [Nalbach et al. 2017], volume rendering [Kallweit et al.
2017], de-noising [Bako et al. 2017; Chaitanya et al. 2017; Kalantari
et al. 2015], or improved importance sampling in light transport
simulation [Dahm and Keller 2017; Müller et al. 2018; Zheng and
Zwicker 2018]. Specifically, the focus of the latter is to build deep
models of the indirect light field in a given scene and placing samples
where this function is high in an importance-sampling spirit. Note,
that this sample placement is a scene-dependent process that is
trained per-scene to optimize for variance reduction in the specific
integrand solution. While the goals of this work are quite different
as training is performed once to find point patterns that generalize
across all scenes / integrands, we also demonstrate that learning
point patterns optimized for MC integration is feasible.

We make use of learned operations on point clouds, as pioneered
by PointNet [Qi et al. 2017]. PointNet and following papers have
made use of symmetric functions and rotational transformers in
a tunable fully-connected architecture, but without translation-
invariance, i. e., using fully connected settings. This might work
when sampling a chair into a small number of points in 3D, but
not to many points in higher dimensions as our comparison to a
fully-connected network will show.

Other work has generalized image convolutions to unstructured
3D [Atzmon et al. 2018; Wang et al. 2018a], e. g., by phrasing the
convolution kernel as a neural network [Hermosilla et al. 2018;
Wang et al. 2018b], but without scalability to higher-dimensional
convolution domains. Our filters are both convolutional and scale to
higher dimensions. Our learnable architecture has many similarities
with (convolutional) neural networks, such as trainable filters, but
also differences, e. g., we work exclusively on point positions and
their changes. Instead of inferring labels or per-pixel or per-point
attributes such as normals, we optimize for filters that transform
sets of random points into sets of points with the desired properties.

Generating samples proportional to a certain target distribution
is at the heart of generative modeling [Dinh et al. 2017; Goodfellow
et al. 2014; Kingma and Welling 2013; Rezende and Mohamed 2015].
However, none of these consider sample correlation. In our case, the
probability is uniform and only the correlation of points is relevant.
Yet, distribution and correlation could be treated jointly in future
work based on our approach.

2.4 Domain-specific languages
Our system is inspired by the rise of domain specific languages,
such as recently proposed for image synthesis [Anderson et al.
2017], high-performance image processing [Li et al. 2018], non-
linear image optimization [Devito et al. 2017; Heide et al. 2016] or
physics [Bernstein et al. 2016]. Instead of deriving our own parser,
we provide a compact suite of functions in TensorFlow [Abadi et al.
2016] that are parsed and evaluated efficiently during training and
testing using TensorFlow’s symbolic analysis and GPU evaluation.

ACM Trans. Graph., Vol. 38, No. 6, Article 226. Publication date: November 2019.

226:4 • Thomas Leimkühler, Gurprit Singh, Karol Myszkowski, Hans-Peter Seidel, and Tobias Ritschel

l1(spec(X)-BN)+
l2(spec(x(X))-Jitter)

Tr
ai

ni
ng

 p
ha

se

E

...

.73

.21

De
pl

oy
m

en
t p

ha
se

θ

... Point correlation lossFilters FiltersApplication Result

X

P
 (X

 |
θ)

θ1

θ2

θ3

Deployment

Optimization

Fig. 2. Our system comprises of two main parts: learning and deployment. At the learning stage (left), a user provides uniform random input point sets
(denoted X , two realizations shown) which are then mapped by our pipeline to a user-defined loss in respect to a target (here a combination of a BN and
a jittered spectrum). During optimization (orange arrow), filters (blue shapes) with tunable parameters (Θ) perform convolutions to produce a new point
set P(X |Θ). In the deployment stage (right), these trained kernel weights are used (blue arrow) to produce point patterns with specified correlations in an
application (here sampling ambient occlusion). Please see Sec. 3 for more details.

3 OVERVIEW
Our exposition has two main parts (Fig. 2): First, we introduce the
notion of a point correlation design loss (Sec. 4) which defines the
desired properties. Second, we describe a deep architecture (Sec. 5)
that can be optimized in respect to this objective.

A point correlation loss is a functional programming snippet, that
maps a point pattern to a scalar value. It is the only user-provided
input to our system at training time. Devising operations to compose
point correlation losses which allow for high flexibility in defining
point patterns is the first key technical contribution of this paper.

We optimize for a point generation method by back-propagating
it through a trainable architecture. This architecture is our sec-
ond main contribution and consists of a deep cascade of weighted
distance-based, unstructured filters (Sec. 5). The unstructured repre-
sentation we choose allows to scale to point sets that are naturally
sparse in higher dimensions (>3D) and could not be captured using
regular representations commonly used for 2D images or 3D vol-
umes. Our filters map higher-D signals to higher-D signals, but rely
on (subspace) distances only. This scales better to higher dimen-
sions, as the notion of distance between a pair of points remains
unchanged across spaces with any dimensionality. Common convo-
lution kernels would fail, as they face a combinatorial explosion with
at least 210 values per kernel in 10-D. Finally, our filters have com-
pact support, allowing to execute fast, once trained, for substantial
point numbers and high dimensions.

Our system is comprised of two stages (left and right in Fig. 2): a
learning stage in which the architecture is optimized and a deploy-
ment part, in which the result of this optimization is executed to
generate new point patterns. The training is supervised only by the
loss, that measures point pattern quality and never requires super-
vision by any point pattern example. Hence, our approach produces
patterns which were previously unknown and consequently could
not have been input to traditional supervised learning.

4 POINT CORRELATION LOSSES
To design our loss functions, we first recall the formalism of point
correlations and the different analysis tools developed over the past
decades to study these correlations [Singh et al. 2019a]. Later, we

define a range of operators that enable the design of these point
correlations. We start by simple spectral and differential domain
properties, include linear and non-linear projections and finally
discuss the metrics between point correlations.
Note, that the key idea to enable scalability is, that all point

correlation operators are only ever computed at training time, never
at test time. Training is slow; execution is fast in comparison.

4.1 Notation
A point correlation loss L(X) ∈ Rn×m → R≥0 maps an unstruc-
tured set X of m points in n-dimensional space to a single non-
negative scalar, which is smaller for point patterns that are closer to
the design goal. The loss can make use of simple operations such as
addition, multiplication, etc. to combine our custom operations to
be listed next. Losses are simple: all patterns produced in this paper
contain only up to three terms. The design of point patterns for a
specific MC integration task is even easier, as users only need to
provide access to a method to sample integrand functions (Sec. 6.3).

These operations enable losses on unstructured point correlations,
which are modular in their design, where the scope of each loss
component can be strictly limited to selected dimensions in the
point distribution. Appendix B lists all symbols used in this work.

4.2 Point correlation
We define the point correlation (Fig. 3) of a point set X as

Pκ (X)(q) = Ex1∼X [Ex2∼X [κ(x1 ⊖ x2, q)]], (1)

where Ex∼X is the expected value of the random variable X , κ is
a kernel working on offsets between pairs of points we denote as
d = x1 ⊖ x2, ⊖ is the toroidal vector difference (wrap-around in the
unit hyper-cube) and q is what we will call the correlation coordinate.
The notion of Pκ is a two-fold abstraction. First, it generalizes

along one axis over Fourier spectra [Zhou et al. 2012] and the differ-
ential domain [Wei and Wang 2011]. Along a second axis, general-
ization is folded into κ, which can work both on linear high-D offset
and on non-linear 1D distance. Pκ (X)(q) is a distribution across the
correlation coordinate q, which is again an abstraction of frequency
or distance of points. The abstract notion is made concrete in an
application by the choice of correlation kernel κ. This kernel puts d

ACM Trans. Graph., Vol. 38, No. 6, Article 226. Publication date: November 2019.

Deep Point Correlation Design • 226:5
Ra

di
al

N
on

-r
ai

da
l

Po
in

t s
et

O
�s

et
s

Spectral Di�erential

c)

a) b)

d

d)

e) f)

q

qq

q

d

x1
x2

Fig. 3. Point correlation (Eq. 1), here shown for a 2D example, is defined
as an expected value over all pairs of points from the point set X (a). We
here show some pairs as links. For each pair the offsets are produced by
subtracting the first point (b), here shown for a single pair x1 and x2 (thick
line). This offset d is then given to a function κ that can work in different
ways, out of which we illustrate four (c-f). The second row (c,d) works in
2D and correlates with the 2D Fourier basis (first column (c), “Spectral”) or
the Gaussian basis (second column (d), “Differential”) at all 2D correlation
coordinates q (one sinusoidal/Gaussian instance shown in magenta). The
third row (e,f) proceeds the same, just that the correlation coordinate q is
a single scalar distance.

and q in different relations: it can work on distances or offsets as
well as it can apply non-linearities such as complex exponentiation
followed by a norm.
As Pκ (X)(q) is an expected value, it could be evaluated using

quadrature or estimated using MC. We will however use specifically
optimized implementations for specific κ.

4.3 Spectrum
The spectrum of a point set X is computed using

spec(X) = Pκ (X) with κ(d, q) = cos(2π ⟨d, q⟩)

andmaps then-dimensional sparse point pattern to ann-dimensional
spectrum. In this case q is an n-dimensional frequency. The resolu-
tionnc of the spectrum can be configured by the user, but is typically
chosen to be a multiple ofm1/n .

This operation is commonly used in conjuction with a norm such
as L1 to measure the difference to a reference spectrum. The point
correlation loss

L(X) = l1(spec(X) − BNOT)

for example computes the spectrum of a pattern X and compares
it to a reference blue noise spectrum generated through optimal
transport (BNOT) [De Goes et al. 2012].

As the DC term (frequency 0) amounts to be the number of points,
and we would like to train independent of that number, we decided
to remove it from the spectrum i. e., set it to zero as in P(X)(0) := 0.

The power spectrum (Fourier coefficient’s magnitude square value):

spec(X)(q) =

����� 1m m∑
k=1

exp(2π i ⟨q, xk ⟩)

�����2 , (2)

is best computed in time linear in the number of samples.

4.4 Differential domain
The function

dDom(X) = Pκ (X) with κ(d, q) = N(q − d)

maps the sparse point pattern to a dense distribution of offsets,
whereN is a zero-mean Gaussian with a standard deviation of 2/nc.;
effectively, an nc-bin n-D histogram. Now, q is an n-dimensional
differential coordinate. It is used similar to the spectrum e. g.,

L(X) = l2(dDom(X) − Jitter)

would ask for a power histogram that is L2-similar to the histogram
Jitter of jittered sampling.

The number of bins nc could be chosen optimal in respect to spec-
trum and point count [Scott 1979]. For our targets, however, more
than 128 bins did not improve result quality. As the computational
overhead of an increased number of bins is small, we retained this
conservative configuration in all our experiments.
For computation, we iterate all pairs of points, compute their

distance, and scatter them to the respective bins around q with
Gaussian weights instead of iterating all pairs for all values of q.
Soft bins make this process differentiable.
Wei and Wang [2011] observed that limiting the interaction to

pairs of only nearby points can produce high-quality results, with
observed (though not guaranteed) linear time complexity. For this
kind of range search to work efficiently for high numbers of points, a
spatial acceleration structure [Agarwal et al. 1999] is needed, which
we regard as future work.

4.5 Radial mean
Besides producing an n-D spectrum or histogram from n-D points
we also support working on the radially-averaged spectrum

radSpec(X)(ρ) = Eq∼Ωspec(X)(ρ · q)

and the radially-averaged histogram

radDDom(X)(ρ) = Eq∼ΩdDom(X)(ρ · q),

where ρ is a radius and Ω is the n-dimensional unit hyper-sphere.

Monte Carlo estimate. A trivial construction of radSpec would
not operate on the point set X , but on spec(X). This indeed would
be more modular, but regrettably does not scale well to multiple
dimensions like n = 10, where a regularly sampled spectrum would
require prohibitive amounts in the order of O(nnc) of memory. Note,
that the output of the radially averaged spectrum is always a com-
pact 1D function of radius, so it requires only O(1) memory.

Addressing this difficulty we suggest estimating the spectrum us-
ing Monte Carlo integration as follows: First, we randomly generate
q locations–that represent frequencies—on the hypersphere Ω using
the method of Hicks andWheeling [1959] and scale them by ρ. Since
only integer frequencies matter for unit sampling domains [Singh
et al. 2019b], we then snap q to the integer grid. Finally, we evaluate

ACM Trans. Graph., Vol. 38, No. 6, Article 226. Publication date: November 2019.

226:6 • Thomas Leimkühler, Gurprit Singh, Karol Myszkowski, Hans-Peter Seidel, and Tobias Ritschel

P(ρ · q) as described above and average. For low-dimensional point
correlations (in practice n ≤ 2), we evaluate all q exhaustively in
a grid using quadrature. We will analyze the convergence of this
estimate in Sec. 6.5.

4.6 Swizzle
As we are interested in the properties of subspaces, we make use of
the typical swizzle operations to extract the dimensions of our inter-
est, denoted as x(X) for the x component, y(X) for the y component,
xy(X) for the xy component, etc.

4.7 Metrics
Typical metrics to compare n-D spectra and histograms (distribu-
tions) areL1,L2, which we denote as l1, l2. In our experiments, we
mostly use L1 thanks to its robustness. It is commonly achievable
in deep learning, but harder to achieve in mathematical derivations,
that often revert to L2.

5 POINT PATTERNS VIA ITERATED FILTERING
Here we introduce a deep trainable architecture for generating point
patterns. The idea is to use a deep pipeline (Sec. 5.1) of learnable
filters (Sec. 5.2) that convert a high number of random high-D points
into correlated points as defined in Sec. 4.

5.1 Architecture

F 1(X | θ) F 2(F 1(X | θ) | θ)

P (X | θ)

...

Ra
nd

om
 sa

m
pl

es

X

F (l)(F (l-1)(F (l-2)(X | θ) ...) | θ)
...

Fig. 4. Illustration of the forward pipeline (P) of our network architecture
form = 32 denoted as X in n = 2. From left to right: The uniform random
input points (X) are processed using a cascade of filters F to produce the
intermediate results F(X) and F(F(X)). After several iterations (dots) the
final outcome, on the right, has the desired BN spectrum.

We formalize this as learnable mapping PL(X |θ) from a set ofm
uniformly random n-D input points X without any specific prop-
erties, into a set ofm output points XOut = P(X |θ) with specific
properties according to the loss L. The mapping P has tunable
parameters θ , for which we learn,

θ = argmin
θ ′

EX∼Um×n [L(P(X |θ ′))],

whereU is a uniform random distribution. We choose to implement
P as a cascade

P = F (l−1)(F (l−2)(. . . F (1)(X |θ)|θ)|θ)

of l unstructured filters Fi , with learnable parameters θ (Fig. 4).
These filters simply map a point set of a certain size and dimension
to another point set of the same size and dimensions and will be
described next.

5.2 Filters
We will first introduce distance-based filters (Sec. 5.2.1), limited
to isotropic losses, before we generalize them to subspace filters
(Sec. 5.2.2) that can be used for anisotropic designs.

Pattern Kernel Response

Fi
lte

r
Su

bs
pa

ce
 F

ilt
er

x

x

x

x

y2

W
ei
gh

t
W
ei
gh

t Dist.

Dist.

y1

y4

y3

y2

y1
y4

y3

y2

y1
y4

y3

y2

y1

y4

y3

Fig. 5. Our tunable filters, based on full-dimensional distance (top) and
based on subspace distances (bottom). The first column shows a point x in
2D and all other pattern points. Colored lines indicate difference between
other points and the center point. The second column shows the filter kernel
(x axis is distance, y axis is weight). The four color-coded distances are used
to look up the kernel weight. The third column shows how the offset vectors
between x and all other points are scaled by the kernel response, and added,
resulting in a single dark-grey correction vector that moves x. While the
first row uses common distances, the second row uses x -subspace distances.

5.2.1 Distance-based Filters. A first solution is to work on one-
dimensional distance, i. e., with radially symmetric kernels, as shown
in the top row of Fig. 5. These are simple enough to be represented
using a 1D table θ of weights with b entries θi .

Let a kernel д, parametrized by a b-D weight vector θ be

д(d |θ) = (1 − frac(d̂)) · θ
⌊d̂ ⌋ + frac(d̂) · θ ⌈d̂ ⌉ where d̂ = d · b/r .

Now filtering F ′ with the kernel д is defined as

F ′(x|θ)i = xi +
m∑
j,i

д(| |xj ⊖ xi | |2 |θ)
xj ⊖ xi

| |xj ⊖ xi | |2
, (3)

where ⊖ denotes the toroidal vector difference. In a slight abuse of
notation, we will refer to the (overloaded) filtering of all points X
as F (X) as well. See appendix A for a derivation of the gradients
required for more efficient learning.

To avoid computing interactions between all points, which would
imply quadratic time complexity, we limit the filters to a constantly-
sized neighborhood of a receptive field r that is typically chosen to
be only a fraction of the domain.

Reading the kernel table continuously at distance d ∈ (0, r) using
linear sampling, makes it differentiable. We always learn a residual
to adjust the point position, which improves gradient flow.

ACM Trans. Graph., Vol. 38, No. 6, Article 226. Publication date: November 2019.

Deep Point Correlation Design • 226:7

Discussion. Please note, that the weights θ can – and also need
to be – negative. Positive weights attract xi into the direction of xj ,
negative weights repel. This is shown by the positive and negative
weights in the column “Kernel” in Fig. 5.

Please also note that the number of filter kernel bins only adds to
the number of trainable parameters, but does not affect the speed at
deployment time: It is a O(1) table look-up. This formulation is sim-
ilar to the one of Zhou et al. [2012] and Heck et al. [2013], who also
update point positions with new positions in an optimization. The
“Response” column in Fig. 5 (top row) visualizes this: the magenta
and the red arrow point towards x (repulsion), the orange and the
yellow one point away (attraction). The sum of all these is applied
to x (black arrow). We do not perform an optimization for a point
set X at run-time, but optimize over all methods that are quick to
execute on a GPU at deployment instead.

5.2.2 Subspace filters. We found the distance-based unstructured
filters to work well, if the loss does not ask for anisotropic effects:
When requiring an elliptical spectrum, a filter based only on dis-
tances has no way of disambiguating if a distance of .1 was along
the x or y direction. In other words the point correlation loss can
ask for more than what the architecture can achieve.
As a solution, it is tempting to use full-dimensional filters, but a

kernel would now need to learn up to all 10-D interactions, resulting
in b10 learnable parameters, so at least 310 = 49, 304 parameters for
each filter, i. e., way too much to learn or even execute efficiently.
As a middle ground, we opt to learn combinations of separa-

ble filters. The weighted distance between two points x1 and x2
is | |M(x1 ⊖ x2)| |2 ∈ Rn → R≥0 where M is a diagonal binary
weight matrix. The common distance is a special case of an identity
weightingM = 1. The subspace filter is now

F (x|θ)i = xi +
m∑
j,i

д(| |M(xj ⊖ xi)| |2 |θ)
M(xj ⊖ xi)

| |M(xj ⊖ xi)| |2
. (4)

By choosing different weight matricesM, different subspaces can
be addressed individually, respectively others can be ignored, by
setting a column to zero. In practice, we encode this by simply listing
the non-zero elements, as done in the swizzle operation. Please note
that the weight matrix M is input to our method. Since the number
of subspaces s grows exponentially with the dimensionality, the
user has to choose relevant subspaces based on domain-knowledge.

Iteration

Di
sta
nc
e

Start

End Near

Far

Weight1

-1

0

Fig. 6. Kernel values as a height
field, depending on iteration
(left) and distance (right).

5.2.3 Kernel interpolation. A
deep pipeline of many filters
might introduce a high number
of trainable variables in the order
of b · l . While several iterations
(typically, l > 20) are required to
get the pattern right and several
bins are required to resolve accu-
rate response to distances (typi-
cally, b = 128), what needs to be
done might not need to be very
different in each iteration.

We capitalize on this observa-
tion as follows: We do not learn

distinct kernels д(1), . . . ,д(l) for each iteration, but a continuous
two-dimensional kernel space h to be used in the i-th kernel as
д(i) = h(d, i/lu |θ), where lu ≪ l is the number of unique kernels.
An example is shown in Fig. 6. Here, one axis is the distance and the
second axis is iteration. We choose h to be piecewise bilinear which
also is differentiable. This allows drastically reducing the number
of tunable parameters, e. g., using l = 32 iterations with only lu = 8
unique kernels.

X y(X)F `(xy(X)|θXY) F `(y(X)|θY)xy(X) F (X)

+

(1,½)

(0,½)

Fig. 7. To optimize samples across subspace y and full space xy , filters in
y need to work jointly with the filters in xy . The outcomes of the filters
are combined using a normalized sum (green weights; here, x is taken from
the xy-filter, and y is taken to be the average y outcome of the y- and the
xy-filter) to obtain filters with prescribed properties in each subspace.

Combination. The filtering described in Sec. 5.2.2 can learn how
to apply filters in subspaces, but to be useful, multiple subspaces
(e. g., x andy) need to work together, as well as jointly with the space
they are a subspace of (xy). To this end, the outcome of multiple
subspaces needs to be combined. In particular, this combination has
to be done after each layer. The necessity to do so is seen when
considering a loss optimizing y and xy jointly (Fig. 7): after each
adjustment in each dimension, both outcomes affect the other; they
need to share information and have to produce one joint xy result,
not two disparate y and xy results.

We achieve this by a normalized sum of subspaces selected using
M. The normalization divides each element in that vector by the
number of occurrences in all subspaces. A point correlation loss
that e. g., asks for xy and y would add the two, but divide y by 2
(green numbers in Fig. 7).

5.2.4 Gridding. Our method can operate in a gridded and ungrid-
ded mode. The ungridded is the default and used for general point
patterns. The gridded variant holds some dimensions fixed.

In a non-gridded point pattern, all dimensions are filtered as pro-
cessed and P maps from n to n dimensions.
A point pattern is gridded when it maps from nIn input to nOut

output dimensions. Here, the first nIn − nout dimensions are initial-
ized using a regular grid. These values are left unchanged by the
filter pipeline. However, all nIn values are used to compute distances.

An example of a gridded point pattern with nIn = 3,nOut = 1 is a
pattern where the first two fixed dimensions are the pixel centers,
and the third dimension is the wavelength for spectral rendering. In
other words, a gridded pattern is a height field: x and y are implicit
and fixed, and the height z changes. Our method can now learn a P
that arranges the wavelength such that they are BN in respect to
other nearby wavelengths at fixed spatial positions.

ACM Trans. Graph., Vol. 38, No. 6, Article 226. Publication date: November 2019.

226:8 • Thomas Leimkühler, Gurprit Singh, Karol Myszkowski, Hans-Peter Seidel, and Tobias Ritschel

l1(radSpec(X)- BNOT)

3

0
40

Target Result

Po
w

er

Anisotropy

Norm. Frequency Norm. Frequency

Norm. FrequencyNorm. Frequency

l1(radSpec(X)- Jitter)

3

0
40

Po
w

er

-10 db

-2 db Anisotropy

-10 db

-2 db

Anisotropy

-10 db

-2 db

-10 db

-2 db

Target Result

l1(radSpec(X)- Step)

3

0
40

Target Result

Po
w

er

Anisotropy

l1(radSpec(X)- Stair)

3

0
40

Po
w

er

Target Result

a) b)

c) d)

l1(radDDom(X)- BNOT)

3

0
.1250

Target Result

Po
w

er

l1(radDDom(X)- Jitter)

3

0
.1250

Po
w

er

Distance

Target Result

l1(radDDom(X)- Step)

3

0
.1250

Target Result

Po
w

er

Distance l1(radDDom(X)- Stair)

3

0
.1250

Po
w

er

Distance

Target Result

e) f)

g) h)
Distance

Sp
ec

tr
al

Di
ffe

re
n�

al

Fig. 8. Results of our approach for different targets and different losses. Each sub-figure shows the program snippet of the loss used, the point pattern
produced by our approach as well as the 2D and radially-averaged power spectra reference (orange) respectively, our result (blue, dashed in 1D). The grey
curves refer to the radial variance (aka. anisotropy) of the Fourier power spectrum. Experiments a-d use the spectral, e-h the differential domain. We see, that
our method faithfully reproduces state-of-the-art 2D jittered and blue noise samplers like Step [Heck et al. 2013] and Stair-case [Kailkhura et al. 2016].

5.3 Training
Optimization. The filter weights θ are the only learnable parame-

ters of our system. Training is using TensorFlow’s SGD employing
the the ADAM optimizer [Kingma and Ba 2014], with an exponen-
tially decreasing learning rate initialized by 10−7. Learning typically
requires around 8 hours on an Nvidia Tesla V100-PCIE with 32GB
memory and 1.38GHz memory clock rate.

Variance reduction. Individual point set realizations give rise to
noisy estimates of point correlations and, consequently, noisy gradi-
ents. For this reason we average the correlations of multiple realiza-
tions to reduce their variance. In particular for our Fourier design,
we found the use of this unbiased estimate essential for convergence:
In each training iteration, multiple output spectra of our system are
averaged before they are evaluated within the loss, e. g., by compar-
ing them to a target. This stabilizes training, especially for small
point countsm. Crucially, the designer does not have the freedom
to combine spectra of different realizations arbitrarily: Spectra are
always averaged. Please notice that this procedure is subtly differ-
ent from mini-batching, as detailed in the supplemental Sec. 2. In a
slight abuse of terminology, we nevertheless refer to the point set
realizations used for variance reduction as a mini-batch. We observe
that a mini-batch size of 4 point sets – followed by radial averaging
– leads to spectra that are converged enough to be used for gradient
computations. We evaluate this choice in Fig. 18 and Sec. 6.5.

6 RESULTS
Here we perform a quantitative analysis for our approach in terms of
spectral and differential properties (Sec. 6.1), look into discrepancy
and error convergence (Sec. 6.2) as well as learning samplers directly
from integrand spectra (Sec. 6.3). We instrument different aspects
of scalability, parameter choices (Sec. 6.4), stability (Sec. 6.5), and
metrics (Sec. 6.6), compare to a fully-connected design (Sec. 6.7),
before we finally show applications to rendering, artistic stippling
and object placement (Sec. 6.8).

Default parameters. Unless said otherwise, this section usesm =
1024 points, nc = 128 pixels / bins for full-dimensional and, na =
4m

1
n for radially averaged spectra or histograms, an architecture

with a depth of l = 60 filters and 20 unique kernels where each filter
has a kernel with b = 96 elements which span the full receptive
field i. e., r = .5.

Presentation. Spectra or histograms shown are averaged across
100 realizations. Our radially averaged spectral plots are normal-
ized horizontally bym−1/n to support comparison across different
numbers of pointsm and dimensions n and cropped to the range
[0, 4]. We call this normalized frequency.

6.1 Spectral and differential analysis
6.1.1 Isotropic 2D. We start by showing results from learning sev-
eral state-of-the-art isotropic 2D patterns in Fig. 8. All losses here
minimize an l1 difference to radially averaged reference spectra.

ACM Trans. Graph., Vol. 38, No. 6, Article 226. Publication date: November 2019.

Deep Point Correlation Design • 226:9

3

0
40

Po
w

er

40Norm. Frequency 0 40 40 40

2D 3D 4D 5D 10D

Norm. Frequency Norm. Frequency Norm. Frequency

Po
w

er

Po
w

er

Po
w

er

Po
w

er

l1(radSpec(X)- BNOT)

Fig. 9. Radially averaged power spectra for our method (dotted blue) and a reference (orange) for increasing dimensions from 2D to 10D (left to right). Results
of our method match the target closely up to five dimensions, especially in the low frequency region (0, 1). With increase in dimensionality, the spectrum
shrinks exponentially towards low frequencies which makes the spectrum looks increasingly piecewise-linear in the normalized range (0, 4). While at 5D the
main features are present, at 10D, our results have deteriorated, compared to lower dimension like 2D.

l1(radSpec(xy(X))- Step) + l1(radSpec(xz(X))- Jitter) + l1(radSpec(yz(X))- BNOT)

1

0
30

Target (2X) Result (2X)

Po
w

er

Norm. Frequency

1

0
30

Po
w

er

Norm. Frequency
-10 db

-2 db

Target (2X) Result (2X)

Result (2X)

xz projec�on

xz projec�onxy projec�on

yz projec�on

yz projec�on

l1(radSpec(xy(X))- BNOT) + l1(radSpec(xz(X))- BNOT) + l1(radSpec(yz(X))- BNOT)

Anisotropy

-10 db

-2 dbAnisotropy

xy projec�on

Result (2X) Result (2X)

Target (2X) Result (2X)

Target (2X) Target (2X) Target (2X)

a)

b)

Fig. 10. Our method can handle anisotropic patterns with different properties in different subspaces. Here, we show different 2D subspaces (of a 3D point
pattern) that are optimized for different target spectra. In the top row, each 2D subspace is given a same target spectrum (BNOT [De Goes et al. 2012]). In the
bottom row, we provide Step [Heck et al. 2013], jittered, and BNOT target spectra for each 2D subspace respectively. The resulting spectra (in blue) closely
match the target spectra (in orange). The rightmost plots show the radially averaged spectrum and the corresponding radial variance (anisotropy).

We see, that our approach can produce four relevant methods
(BNOT [De Goes et al. 2012], jitter [Cook 1986], Step BN [Heck
et al. 2013] and Stair BN [Kailkhura et al. 2016] in Fig. 8, a-d) as the
radially averaged spectral profiles (orange and dotted blue) match
the reference closely, in particular, in the low-frequency regions.
We also see that the 2D spectrum matches the reference while our
learningwas only supervised to produce a radial average. This shows
that no additional anisotropy was introduced, further supported
by the radial variance plots (grey). Fig. 8, e–h, repeats the above
experiment in the differential domain, where the target is the 1D
point correlation function. Again both 1D and 2D PCFs match.

6.1.2 Multi-dimensional isotropic. We explore the previous anal-
ysis for n > 2 in Fig. 9, for one specific important pattern, BNOT
[De Goes et al. 2012]. Target spectra for higher dimensions were
produced by scaling [Heck et al. 2013; Pilleboue et al. 2015] the two
dimensional BNOT power spectrum computed over 1M samples.
Thanks to our MC-based formulation (Sec. 4.5) that avoids recon-
structing the multi-dimensional spectrum, our system is able to
perform such multi-dimensional spectra optimization.
We note that the results match the target, but this gets increas-

ingly difficult in higher dimensions. While at 5D, the BN peak is
still distinct with a zero region and a peak at 1.0, at 10D the spec-
trum doesn’t improve. This is one of the limitations of our current
architecture. Our method, however, allows BN in subspaces as well,
as explored next (see supplemental Fig. 3 for subspace spectra in
10D). The only other recent work in multi-dimensional blue noise is

Spoke Darts [Mitchell et al. 2018], but without any control over sub-
spaces, at much higher algorithmic complexity (no code is changed
to work in high dimensions for us) and compute cost (we compute
this pattern in 150ms).

6.1.3 Subspace results. Taking it a step further, we now analyze
losses that ask for different spectra in different subspaces [Ahmed
et al. 2016; Chiu et al. 1994; Reinert et al. 2016]. Our exemplary
analysis is inn = 3 dimensions where three canonical 2-D subspaces,
xy,xz and yz, exist. The loss now sums three L1 losses in three
subspaces in respect to three references. Results are shown in Fig. 10.

We see that our approach manages to produce a pattern that has
the desired spectra in all projections Fig. 10, a. Note, that this would
not be the case for a 3D BNOT pattern that is unaware of subspaces.
Furthermore, we can ask for different targets in different sub-

spaces (Fig. 10, b). Overall, each subspace achieves the desired target
spectra, but with slight mutual concessions to be made: We see, that
the xy projection that seeks to produce a Step BN spectrum shares
they projection with BNOT which is reflected in the long horizontal
anisotropic line in our xy / Step BN spectrum. Along the vertical
axis of xy, the anisotropy is due to the shared x projection with
Jitter. Jitter (x , z) shares the z projection with BNOT. This manifests
as the long horizontal anisotropic line in our Jitter (x , z) spectrum.
Along the vertical axis of Jitter, the anisotropy is due to the shared
x projection with Step BN.

We also show the radial average and the radial variance for both
patterns (Fig. 10, a & b). The radial average looks like a modified

ACM Trans. Graph., Vol. 38, No. 6, Article 226. Publication date: November 2019.

226:10 • Thomas Leimkühler, Gurprit Singh, Karol Myszkowski, Hans-Peter Seidel, and Tobias Ritschel

jittered pattern for both: a small ramp and a constant range. As
expected, for an anisotropic pattern, the variance is high.
Previous work has so far, by-construction, been only able to

address special cases such as jitter in multiple spaces [Chiu et al.
1994; Jarosz et al. 2019], BN along canonical projections [Reinert
et al. 2016] or combinations with low discrepancy patterns in 2D
[Ahmed et al. 2016]. Our work combines arbitrary spectra and does
so in multiple dimensions.

6.2 Error Analysis
In this section, we look at an important application of point patterns:
their use as (Quasi) Monte Carlo sampling. We first look into the
discrepancy and second analyze the variance for differentm.

Discrepancy. Our approach does not incentivise discrepancy as
defined using classicmetrics [Doerr andDe Rainville 2013]. Nonethe-
less, our patterns can have competitive discrepancy, as shown in
Fig. 11, where we compute the box discrepancy [Niederreiter 1992]
(100 k samples) of several common patterns in 2D and 3D, as well as
for some of ours. Commonmethods are random, jittered, Sobol [1967].
Ours are BNOT and Step BN as used in Fig. 8.

1

10-3

101 103Point count

D
is

cr
ep

an
cy

2D

Our BNOTRandom
Jitter
Sobol

Our Step BN

1

10-3

101 103Point count

D
is

cr
ep

an
cy

3D

Our BNOT xy/xz/yz
Our BNOT/Step/Jitter

Fig. 11. Discrepancy analysis for a 2D (left) and a 3D (right) integration
problem. In each plot, the vertical axis shows discrepancy (less is better)
and the horizontal axis shows the point (sample) count. Different methods
are shown in different colors. The grey-shaded wedges bound the theoretic
limits. We see, that our methods (dotted blue and orange) achieve lower
discrepancy than random and jittered samplers (black and medium grey)
without having been provided any explicit supervision on discrepancy. We
also see, how optimizing in subspaces can improve the result further (red
and pink). Finally, low-discrepancy sequences like Sobol (light grey), provide
a superior discrepancy by construction.

For 2D, we see, the expected relations between common methods
are present. We also see, that the discrepancy of BNOT and Step BN
(dotted lines in Fig. 11, 2D) is performing better than jitter, with a
discrepancy closer to Sobol, which performs best. Discrepancy is
lower as a concession to spectral properties, which dominate MC
convergence, as demonstrated next. However, Sobol is a special
solution for a special problem (integration) while we provide a
general system for many tasks (object placement, stippling, etc.).

Variance. We conclude our analysis by demonstrating our sam-
ples in a rendering setting (Fig. 12). To this end, different scenes
are considered, e. g., integrands in 2D (a simple disk and ambient

occlusion) and 3D (pixel space and motion blur). All scenes are ren-
dered with direct illumination using PBRT-v3 [Pharr et al. 2016].
We compare our BNOT and Step BN variants to rank-1 [Dammertz
and Keller 2008; Niederreiter 1992], Fibonacci [Nuyens 2013; Sloan
and Joe 1994], Halton [1960] and Sobol [Sobol 1967] samplers. For
Sobol and rank-1 lattice, we use generating vectors provided by
Frances Kuo [2007]. In our 2D experiments, the Fibonacci lattice
generating vector use {1, Fj−1} form = Fj samples for a given j-
th Fibonacci sequence number. Note, that we compare point sets
against sequences which may have better convergence rates for
integration than sequences. The data plots in Fig. 12 were gener-
ated by averaging variance across 10 random pixels over the image.
Each pixel was estimated over 200 realizations. To allow comparison
across instances of the pixels, we computed relative variance: vari-
ance of the estimates divided by their squared mean. A low value is
better, i. e., would render less noisy images.

10-4

10-6
101 103

Va
ria

nc
e

[lo
g]

2D render 10-2

10-8
101 103Point count [log]

3D render

Point count [log]

Va
ria

nc
e

[lo
g]

10-2

10-6
101 103Point count [log]

2D analy�c

Va
ria

nc
e

[lo
g]

BNOT-xy-yz-xz
BNOT-Step-Ji�erRandom

BNOT
Fonts natural

Rank-1
Halton

Sobol Fibonacci
Analy�c

Fig. 12. Variance convergence for different sampling patterns (colors) at
different integration problems ranging (left to right) from 2D analytic over
2D rendering to 3D rendering. In each sub-figure, the horizontal axis is
sample count and the vertical axis is variance for a single image pixel i. e.,
image noise (less is better). Our method performs quite well for 2D integra-
tion, but requires more explicit loss functions in 3D and beyond to capture
correlations across multiple subspaces.

In 2D, for a simple disk integrand, our learned methods show less
variance compared to the well-known low discrepancy samplers
(rank-1, Fibonacci, Halton and Sobol), whereas, with complex 2D
visibility function our method gets competitive across different
point count. We also compare it against our novel sampling patterns
optimized directly for a given class of functions: Fonts spectra in red,
functions havingm−1/n radial spectrum fall-off [Brandolini et al.
2001] in black. More details are in Sec. 6.3.

In 3D, rank-1, Halton and Sobol are superior to our sampler.
We further observe that performing a full-dimensional optimiza-

tion (blue curve in Fig. 12) for MC integration tasks is less rewarding
than directly optimizing the lower (2D) subspaces (BNOT-xy-yz-xz
and BNOT-Step-Jitter curves). Especially, a combination including
Step, BNOT and jittered performs much better. See supplemental
Fig. 4 for improvements.
This indicates that there is no universal solution for all tasks.

Future work needs to consider other aspects (e. g., discrepancy)
with Fourier statistics to better optimize the loss function. In ren-
dering, since the variance convergence is mostly driven by high-
dimensional integrands, improving scalability is a promising future
avenue.

ACM Trans. Graph., Vol. 38, No. 6, Article 226. Publication date: November 2019.

Deep Point Correlation Design • 226:11
Fo

nt
En

vm
ap

Sh
ad

ow

Jittered
Exemplars

BNOT Ours
Spectrum

Integrand
Product Product Spectrum Product Pattern

Sobol
Product

Rank-1
Product

Fibonacci
Product

2x 2x

4x 4x

2x 2x

Fig. 13. Learning to sample from integrand statistics. Each row is a different integrand, i. e., graphics application: font super-sampling, natural illumination,
and soft shadows. Each row shows: first, some examples from the distribution of integrands; second, the spectra product of the integrand with typical patterns
including ours following Eq. 5. Finally, a single realization of our pattern is shown. The spectra used in the middle-row are 2x higher resolution than top and
bottom rows. The spectra of Rank-1 and Fibonacci are magnified to aid visibility. Please see the supplemental Fig. 1 for full-sized spectra.

In summary, different samplers, including ours, show different
strength for different integration problems. Seeing this as an oppor-
tunity, we next show how our framework can be used to optimize
directly for a specific function class, resulting in novel patterns.

6.3 Learning Sampling MC from Integrand Statistics
Integrands can be expected to have a certain spectrum, such as the
quadratic decay in natural images [Simoncelli and Olshausen 2001],
them−1/n fall-off for hyper-spherical caps [Brandolini et al. 2001]
or the one of spherical natural illumination [Dror et al. 2001]. We
show how any such spectrum can be used directly as a target of
our design allowing to learn novel point patterns optimized for MC
integration of a user-provided function class.
All the user needs to provide is the representative power spec-

trum of the chosen class of functions. Following this, estimating
the integral of a class of functions with a power spectrum F using a
stationary sampling pattern with an expected power spectrum E[S]
would give the variance [Singh et al. 2019a,b]

σ 2 =
∑
q∈Z

F(q) · E[S(q)], (5)

i. e., the sum over the product of the integrand and samples’ power
spectra at all non-zero integer frequencies q. Similar derivations
based onCampbell’s theoremweremade for the PCF byÖztireli [2016].

Intuitively, this means sampler spectra should have low response
where the integrand spectrum has high values and vice versa, as
this minimizes the product and ultimately the area-under-the-curve.
In Fig. 14, we see a grey integrand spectrum F as well as a blue and
an orange sampler spectrum Ss,1 and Ss,2. The estimator variance
is equal to the area under the curve (shown solid, or as circles with
area a1 and a2).
As many natural signals decay in amplitude with increasing fre-

quency [Mandelbrot 1983], most sampling patterns try to be free of
low frequencies i. e., to be “blue”. While this is a good average strat-
egy, specific integrands might differ substantially in the particular

shape of this decay. Our method allows designing purpose-fitted
sampling patterns for specific decay.

Po
w
er

Frequency

a
1 a

2Ss,2

Ss,1

F

Fig. 14. Given an in-
tegrand spectrum (black
plot) we here compare
two sample spectra (or-
ange and blue plot). A sam-
ple spectrum that negates
the integrand spectrum
(orange) has a lower area
under the curve (visualized
as an orange circle) than
the blue one and hence,
less error.

To this end, we first randomly se-
lect exemplars from the space of inte-
grands. The first column in Fig. 13
shows representative examples of
this. Second, a MC estimate of the in-
tegrand spectrum F is computed by
averaging the power spectra of all
these examples. Finally, we use this
F in a loss l1(spec(X) ◦ F), where
◦ is the Hadamard product. Please
note, how we use full-dimensional
(here 2D) spectra instead of radially
averaged ones here, as the integrand
spectra show marked anisotropy. No-
tably, this procedure occurs before
training as an additional stage of pre-
processing and does not affect run-
time execution efficiency for sam-
pling of new integrands.

Our Font Our Envmap Our Shadow BNOT

Sobol Rank-1 Fibonacci Jitter

.9
Font

.9
67

.9
68

.9
68

.9
99

.9
81

.9
73

1.
00

8
1.

13
5

.9
91

.9
81 .9
89 .9

95
.9

92
.9

46
1.

06
6

1.
04

0

Re
la

tiv
e

Va
ria

nc
e

Envmap Shadow

1

1.1

.9
85

.9
82

.9
80 .9

94 .9
99

.9
62

1.
01

5
1.

08
3

Fig. 15. Relative variance of the samplers in Fig. 13. Vertical axis is variance
(less is better), different methods are different colors.

ACM Trans. Graph., Vol. 38, No. 6, Article 226. Publication date: November 2019.

226:12 • Thomas Leimkühler, Gurprit Singh, Karol Myszkowski, Hans-Peter Seidel, and Tobias Ritschel

Font super-sampling. For demonstration, we first consider the
practical example of font reproduction (Fig. 13, first row), which we
phrase as solving the integral of the image function over a pixel by
super-sampling it with a purpose-made pattern.

Envmap integration. A similar procedure can be applied to the
integration of entire illumination-reflectance products in photore-
alistic rendering. To this end, we uniformly sample from a corpus
of HDR environment maps, BRDFs, normal orientations and view
positions and compute the integrand (without importance sampling)
as a common 2D image where every pixel is weighted by reflectance
from the BRDF slice for this view and normal. As before, we optimize
in respect to the power spectrum of the average of these.

Soft shadows. In the case of area light illumination sampling,
binary visibility is computed between scene and light points. Our
sampling patterns are used to place light samples for a fixed scene
point, integrating a binary image defined in a coordinate space
parametrizing the area light surface. We here use quadratic area
lights for simplicity but other parametrized shapes presumably will
work similarly. Visibility is computed for random coordinates on
randomly placed area light and random points on the surface of
3D scenes comprising of objects from ShapeNet [Chang et al. 2015]
placed on a ground plane.

Comparisons. We find that for font super-sampling, our pattern
performs better in terms of estimator variance than BNOT [De Goes
et al. 2012], but is in close competition with Sobol and rank-1 lattice
samplers. Our method outperforms a Fibonacci lattice generated
using the {1, 144} generator vector form = 233 samples. For fair
comparison, the Fibonacci spectrum is appropriately scaled to match
the variance fromm = 256 samples. See Fig. 15 for relative error
values, i.e., L1 error divided by average error value of all samplers.
In the case of envmaps and soft shadows, our samplers perform better
than BNOT, Sobol and Fibonacci but are outperformed by a rank-
1 lattice. This highlights the inexpressiveness of Eq. 5 for certain
function classes in obtaining the optimal solution. To obtain maxi-
mal benefits, future work should consider the generalized variance
form [Singh et al. 2019b] with potentially other characteristics (e. g.,
Koksma-Hlawka inequality [Niederreiter 1992]) in the loss function.
Analyzing these novel patterns is also a promising future direction.
The resulting improvements are documented in Fig. 15.

6.4 Scalability
Instrumentation. Fig. 16 analyzes the scalability of our approach.

Fig. 16,a shows compute time (y-axis, less is better) as a function
of points (x-axis) and number of dimensions (different plots). We
tested for a radially averaged BNOT target with l = 40 layers on a
Tesla K40m GPU. We see that our approach can produce substantial
number of points (upto 8192). A typical point set with 1, 024 points
requires ca. 100ms to produce. In one second, we can produce sets
in 2D to 10D of up to 8192 points, indicating performance scales
favorably with dimensionality.

A key parameter of our architecture is its depth, i. e., the number
of filter iterations. Consequently, Fig. 16,b repeats the experiment,
but for architectures of varying depth. We see that the method scales
linearly in all dimensions. We study the error across different depths

in Fig. 16,c. We see that quality saturates around the 40 levels we
suggest.

An important parameter of our method is the size of the receptive
field, which we vary in Fig. 16,d to see that the receptive field of
r = .2 of the domain size is a good compromise: Error for larger
field saturates and smaller receptive fields produce low-frequency
error (arrow in Fig. 16,d). This can benefit certain applications (e. g.,
object placement) where exact zero-energy low frequency region is
not critical.
Finally, we look into the effect of filter kernels size (b) on the

spectrum in Fig. 16,e, to find that quality saturate around the b = 64
we use. Smaller kernels smooth the profile (A) and create aliasing
(B). Please note, that speed is not affected by kernel size (not shown),
as it is a O(1) look-up.

We conclude that our method scales across different domains and
is adjustable to trade quality and speed.

6.5 Stability
Point count. Our architecture is trained with a certain point count

m but can be applied to point sets of slightly different sizes. Fig. 17
shows that the spectrum remains stable when running on twice or
half as many points. For point counts similar to 256, the quality is
very similar to a reference and degrades noticeably at ×4 or ×.0625.
This indicates our architecture has learned to generalize over point
counts to some degree. Note how we do not make point count input
to the architecture and explicitly train for this generalization or find
analytic ways to scale filters; which we both leave to future work.

Variance reduction. We use the average correlation of multiple re-
alizations to reduce variance and aid training convergence.

Lo
ss

Training

1 2 4 8

Samples

Fig. 18. Reduction of error
(vertical, less is better) over
training iterations for different
numbers of training steps (hor-
izontal) when using different
numbers of pattern instances
(colors). The funnel width cor-
responds to the .75 precentile
of the loss over training.

We verified this is effective by
varying the number of sample pat-
terns averaged per training step in
Fig. 18.
Here, the horizontal axis is

training progress, the vertical axis
depicts loss and different colors
show different number of realiza-
tions to average. The width of
the bar is a smoothed .75 per-
centile of the loss. First, we see
that adding more realizations re-
duces the loss. Second, a likely
cause for this is also visible: the
variance of the loss is reduced as
well by using more realizations,
seen in the tighter funnels. At the
same time, we see that at around
8 realizations, the return likely diminishes.

Spectrum convergence. Fig. 19 shows the convergence of our MC
spectral estimate for a 2D BNOT spectrum with varying numbers
of samples. The given numbers signify the average sample count
per radial frequency. We see that noise disappears gradually and a
spectrum at around 16 samples is already very similar to the real

ACM Trans. Graph., Vol. 38, No. 6, Article 226. Publication date: November 2019.

Deep Point Correlation Design • 226:13

2D

Point count [log m]

Ti
m

e
[lo

g
m

s]

3D 4D

Network depth [l]

10 40 901k 8k2k 4k
Ti

m
e

[m
s]

Re
ce

pt
iv

e
�e

ld
 [r

]

Norm Freq.

a) b) c) d)

102

103

101

10D

0

200

0 2

.075

.1

.2

.5

Po
w

er

N
et

w
or

k
de

pt
h

[l]

Norm Freq.0 2

8

16

40

Po
w

er

Ke
rn

el
 s

iz
e

[b
]

Norm Freq.

e)

0 2

16

32

64

Po
w

er

A
B

Fig. 16. Scalability analysis: Compute time per number of points (a) and layers (b). In (c), we show the change of spectrum (here and following: radially
averaged 2D BNOT) for three different depths. The effect of four choices of receptive field size on the spectrum is seen in (d). (e) documents the change of
spectra when the number of filter kernel bins b varies. Please refer to Sec. 6.4 for a full discussion.

x1.25 x4x0.5x0.06m=16 m=128 m=320 m=1024

Train m=256 Test with more pointsTest with less points

Fig. 17. Testing for point countsm′ that differ from training point count
m = 256. Test point countm′ is stated as a multiple of the training point
countm. Blue shows the radially-averaged 2D BNOT target; orange our
result. A part of the resulting pattern is shown in each right top inset.

1
4

16
32
64

128
256 log(smp)

lo
g(
va
r)

1 256

10

1

.1
Frequency

Po
w
er b)a)

Fig. 19. To handle Fourier power spectra beyond two dimensions, we es-
timate them using the randomly picked frequencies q (in Monte Carlo
fashion) at a given radius ρ . At the right (a), radial profiles for a 2D blue
noise target [De Goes et al. 2012] are shown when estimated using different
frequency-sample counts (colors, from 1 to 256). The plots are vertically
shifted for visibility. In our experiments, we choose q = 128 to estimate the
radial spectra up to 10-dimensions. The right part (b) shows the conver-
gence of the error (vertical axis) of the estimate of the spectrum for different
numbers of samples (horizontal axis).

spectrum. At every training step the samples are different, so no
bias is introduced.

Input pattern. Our method transforms a uniformly random pat-
tern into a pattern with prescribed correlations. It is, however, impor-
tant to ask how the properties of the input pattern affect the result.
We hence analyze the effect of input properties on output properties
in Fig. 20. The target is always radially averaged 2D BNOT but the
input pattern is changed from jittered, to regular, to BNOT. We see
that our approach struggles to turn a regular pattern into a BNOT
pattern, while it successfully improves a jittered pattern. Finally,
when ran on a BNOT input (that can also, recursively, be considered
to be similar to its own output) the result is a BNOT pattern as well.

3

0
40

Po
w

er

Norm. Freq. 40 40 Norm. Freq. 40 40 Norm. Freq. 40

Input Output Target

3

0

Po
w

er

3

0

Po
w

erJi�er Regular BNOT

Fig. 20. Input stability analysis. Starting from different input sample pat-
terns (shown in green: Jitter, Regular and BNOT itself – columns) our ap-
proach produces distributions (orange) that closely match the target (blue,
dotted), except for the regular grid input.

6.6 Choice of metrics

Norm. freq.

Po
w

er

3

0
0 2

Our L1
Our L2
Target

Fig. 21. Comparison of different
metrics (colors) for matching a
BNOT target. The pink insets
zooms into the low-frequency re-
gion where differences appear.

We investigate how the choice
of metrics (Sec. 4.7) influences
result quality. We observe that
L1 consistently achieves a
more faithful fit to target spec-
tra and differential histograms
in comparison to L2. The dif-
ference between the metrics is
particularly striking for blue-
noise profiles, where we could
achieve the required vanishing
energies in the low-frequency
regions only using L1 (Fig. 21).

6.7 MLP comparison
We here look into an ablation experiment that replaces the unstruc-
tured iterated convolution with a fully-connected network. We use
a Multi-layer Perceptron (MLP) that maps uniform random points
to point patterns: Input and output are vectors that stack all coordi-
nates of all points. The mapping directly is regressing the coordinate
values. An MLP has two main architectural parameters (Fig. 22, a):
the number of hidden states and the number of layers. We found
an MLP with eight hidden states per input point and five hidden
layers to work best to reproduce n = 2-D BNOT with m = 1024
points, after experimenting with 1–8 hidden states and 1–5 layers.
Regrettably, applying an MLP to our problem is difficult for two
reasons: scalability and quality.

ACM Trans. Graph., Vol. 38, No. 6, Article 226. Publication date: November 2019.

226:14 • Thomas Leimkühler, Gurprit Singh, Karol Myszkowski, Hans-Peter Seidel, and Tobias Ritschel

1024x2
(1024x8)2

(1024x8)2

(1024x8)2

(1024x8)2

(1024x8)2

1024x2

a) b)

Norm. freq.

Po
w

er

3

0
0 2

MLP
Our
BNOT

In

Out

Fig. 22. MLP structure used for compari-
son (a) and spectra of a BNOT reference,
our result and an MLP, where differences
manifest in the low frequencies (b).

We first note, how
different from our un-
structured convolutional
design, the number of
learnable MLP param-
eters depends on the
number of input points,
and it does so quadrat-
ically due to the fully-
connected weight ma-
trix. At 1024 input points,
we train at least 5 ×

(1024 × 8)2, that is
ca. 335M parameters (ResNet [He et al. 2016] uses 1.7M parame-
ters for state-of-the-art classification; we use less than 10 k). Higher
point and layer counts cannot be trained on a machine equipped
with 32GB of memory.

Fig. 22,b shows a typical result produced by an MLP, that has two
problems: quality and bias. We note that an MLP indeed produces
the desired radially-averaged spectrum (Fig. 22,b, green), but with
a marked bump around the low frequencies. This tendency can
also be seen in the pattern itself that has uneven overall density.
Note, how our approach (Fig. 22,b,orange) matches the spectrum
everywhere. AnMLP further produces a substantially biased pattern,
which remains similar, disregarding the input. Numerical estimation
of the bias [Öztireli 2016; Singh et al. 2019b; Subr and Kautz 2013]
confirms this finding. This is a perfectly reasonable response to
the loss used, which only constrains correlations between points.
As the MLP works on absolute coordinates it can easily produce a
translation-variant pattern with bias.

We conclude that an MLP is neither scalable to high point counts
nor does it provide the quality required for most applications.

6.8 Applications
Our trained filters can be efficiently applied to problems such as
dithering or object placement.

Dithering. The ability to compute gridding masks (dithering pat-
terns for rendering) is demonstrated in Fig. 23. Similar to Georgiev
and Fajardo [2016] we optimize for a grayscale dither mask (of size
32 × 32 × 1 in this example), where x and y correspond to fixed
pixel grid indices and z are optimized gray values. To achieve this,
our framework does not require additional coding besides adding
an enclosing grid operator that extracts the z dimension from a
3D pattern, keeping x and y fixed regular. Once the dither mask
is created, it is tiled and the noise values are thresholded against
the luminance values of the input image to determine the binary
output value of each pixel. Explicit constructions of such masks can
take considerable implementation effort (simulated annealing). This
also demonstrates our framework’s ability to handle different target
spectra along different projections (in this case, blue noise along 1D
and regular for the rest).

Object placement. We further demonstrate the capability of our
framework to handle different target spectra. In Fig. 24, we trained
for different colors of noise to proceduraly place a flower object.

Our blue noise grid Random

Fig. 23. Dithering for our (left) and a random mask (right).

Blue noise Pink noise Green noise

Fig. 24. Object placement for three learned colors-of-noise.

7 DISCUSSION AND LIMITATIONS
Fixed dimensionality. The trained pipeline P is specific to the

dimension n. While the filters work on distances and are agnostic to
dimensions, what they learned is dimension-dependent. Effectively,
the architecture needs to be re-trained for every dimension.

Fixed point count. Our architecture is trained for a fixed number
of pointsm. While the architecture can also be applied to similar
numbers of points, drastically different point numbers require re-
training. We analyze the effect of this choice in Fig. 17 to find that
twice or half the point count is still similar to the original count,
but more or less than that starts to degrade noticeably. Finally,
scalability to a very high number of points is limited by computing
the nearest-neighbor information.

User parameters. A user also has to choose the depth of the archi-
tecture l and the trained filters will be specific to that depth. As we
find the solution to be progressive, i. e., the quality to improve with
layers, it is possible to stop computation earlier, at l ′ < l , but the
maximum quality is achieved at l . One solution is to train with a
high l and then cut compute time at deployment to an l ′ with the
required quality.

On-line and off-line point patterns. Depending on the memory
and time requirements of the application, our method can be used
both to pre-compute and cache a single realization off-line, as well
as to quickly compute many realizations on-line, e. g., for interac-
tive exploration of different object placements or using a different
sample pattern in every pixel, requiring millions of realizations. The
set of tunable parameters is compact, typically requiring orders of
magnitude less storage and bandwidth than a point pattern.

Computational speed. Our method can be much slower than spe-
cialized solutions for specific problems, such as Halton or Sobol, but

ACM Trans. Graph., Vol. 38, No. 6, Article 226. Publication date: November 2019.

Deep Point Correlation Design • 226:15

faster than previous point pattern design work and is so without
any low-level optimizations.

Generality. Our work as a whole is more general than previous
work as it can address many different objectives. A specific learned
instance of our pipeline however, can be less general, in the sense
that it is specific to a target or a certain class of integrands..

Point sets and sequences. Our approach produces point sets, not
point sequences, i. e., points are produced in no specific order. In
particular, this for now prevents producing progressive results, e. g.,
a point set where the firstm/2 points have a spectrum similar to the
one of the fullm points. Working on ordered, but unstructured data
is a promising avenue of future work, not limited to point pattern
correlation design.

High- and multi-dimensional point patterns. Our approach does
not yet scale to higher dimensions (>10-D) or larger point clouds
(>50 k). However, many important integration problems in rendering
require much higher numbers of dimension. The first is due to the
separable construction: the effort is still linear in the number of
dimensions. While doing so allows filters to operate in such spaces,
it is no guarantee that composing them into a pipeline is effective:
distances in high-dimensional spaces often behave differently and
indeed we see increased difficulty for high-dimensional patterns.
Achieving properties across all the combinatorically many possible
subspaces is also difficult, which is why we demonstrate correlation
in a selection of subspaces and (radially-averaged) in the full space.

Metrics. In this work we restrict ourselves to using the common
and simple metrics L1 and L2. However, observing their notably
different influence on the results, we see the use of more advanced
metrics (e. g., Wasserstein, total variation) and their combinations
as promising future work.

Continuous vs. discrete. Our approach operates on continuous
point patterns by design, but the gridding function enables the
system to work on (partially) discrete point patterns like dither
masks. While we demonstrate the ability to successfully produce
blue-noise masks, our filter-based architecture is not the best fit for
this type of application. We therefore expect specialized approaches
[Georgiev and Fajardo 2016] to perform better on this task.

Generative modeling. Different from many other generative mod-
els we do not aim at modeling the underlying distribution of target
point sets, but rather exclusively focus on correlations. We consider
a combination of our approach with more advanced learnable archi-
tectures, such as Real NVP [Dinh et al. 2017] or normalizing flow
[Rezende and Mohamed 2015] promising directions to explore.

8 CONCLUSION
We have proposed a framework to optimize for methods that turn
uniform random points into point patterns with properties relevant
for computer graphics tasks. Other than previous work that requires
mathematical derivation and implementation effort, we simply state
the forward model as a loss and rely on modern back-propagation
software to come up with a point pattern generation method. The
methods resulting from our approach are versatile: As we have
shown several previous patterns can be emulated and in some cases

even surpassed in terms of quality and/or computation speed (in
multiple dimension, anisotropy, subspaces). We share execution
efficiency with classic CNNs that require only a few passes across
the input and complete GPU-friendly data-parallelism. Point sets of
ten-thousands are generated in a second.
Still many questions remain to be answered. While we state the

loss and hope for modern optimizers to find good solution, at the
one hand, we lack any theoretical guarantees. On the other hand,
most mathematical derivations also do not provide proofs, such
as we are unaware of proofs that Lloyd relaxation converges in
high dimensions. Future work will need to investigate a detailed
convergence analysis for different losses. Ultimately we would want
to ask if any point pattern can be learned as we here have only
shown a small, but important subset.
We think that our approach can be categorized as a generative

model that is trained in a semi-supervised fashion, specifically
through inexact supervision [Zhou 2017]. Clearly, we do not pro-
vide supervision in form of pairs of input and output that sample a
mapping. Instead, we learn filters, that, when applied to originally
random data are free to do to those points what they please, as long
as they introduce structure in the form of point correlation.
Ultimately, we hope that our approach will support exploration

of new point patterns, make their application easier in practice, and
finally move forward their theoretical understanding.

ACKNOWLEDGMENTS
We would like to thank all the reviewers for their detailed and
constructive feedback. This work was supported by the Fraunhofer
Society and theMax Planck Society as a cooperation programwithin
the German Pact for Research and Innovation (PFI).

REFERENCES
Abadi et al. 2016. TensorFlow: A System for Large-scale Machine Learning. In Proc.

USENIX.
Pankaj K Agarwal, Jeff Erickson, et al. 1999. Geometric range searching and its relatives.

Contemp. Math. 223 (1999).
Abdalla GM Ahmed, Hélène Perrier, David Coeurjolly, Victor Ostromoukhov, Jianwei

Guo, Dong-Ming Yan, Hui Huang, and Oliver Deussen. 2016. Low-discrepancy blue
noise sampling. ACM Trans. Graph. 35, 6 (2016).

Luke Anderson, Tzu-Mao Li, Jaakko Lehtinen, and Frédo Durand. 2017. Aether: An
Embedded Domain Specific Sampling Language for Monte Carlo Rendering. ACM
Trans. Graph. 36, 4 (2017).

Matan Atzmon, Haggai Maron, and Yaron Lipman. 2018. Point Convolutional Neural
Networks by Extension Operators. ACM Trans. Graph. 37, 4 (2018).

Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan NováK, Alex Harvill,
Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-predicting Convolu-
tional Networks for Denoising Monte Carlo Renderings. ACM Trans. Graph. 36, 4
(2017).

Michael Balzer, Thomas Schlömer, and Oliver Deussen. 2009. Capacity-constrained
point distributions: a variant of Lloyd’s method. ACM Trans. Graph. 28, 3 (2009).

Gilbert Louis Bernstein, Chinmayee Shah, Crystal Lemire, Zachary Devito, Matthew
Fisher, Philip Levis, and Pat Hanrahan. 2016. Ebb: A DSL for Physical Simulation
on CPUs and GPUs. ACM Trans. Graph. 35, 2 (2016).

John Bowers, Rui Wang, Li-Yi Wei, and David Maletz. 2010. Parallel Poisson disk
sampling with spectrum analysis on surfaces. ACM Trans. Graph. 29, 6 (2010).

Luca Brandolini, Leonardo Colzani, and Andrea Torlaschi. 2001. Mean square decay
of Fourier transforms in Euclidean and non Euclidean spaces. Tohoku Math J 53, 3
(2001).

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Reconstruc-
tion of Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder.
ACM Trans. Graph. (Proc. SIGGRAPH) 36, 4 (2017).

Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong

ACM Trans. Graph., Vol. 38, No. 6, Article 226. Publication date: November 2019.

226:16 • Thomas Leimkühler, Gurprit Singh, Karol Myszkowski, Hans-Peter Seidel, and Tobias Ritschel

Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3DModel Repository.
arxiv:1512.03012 (2015).

Zhonggui Chen, Zhan Yuan, Yi-King Choi, Ligang Liu, and Wenping Wang. 2012.
Variational blue noise sampling. IEEE Trans. Vis Comp. Graph. 18, 10 (2012).

Kenneth Chiu, Peter Shirley, and Changyaw Wang. 1994. Graphics Gems IV. Chapter
Multi-jittered Sampling.

Per Christensen, Andrew Kensler, and Charlie Kilpatrick. 2018. Progressive multi-
jittered sample sequences. Comp. Graph. Forum (Proc. EGSR) 37, 4 (2018).

Sebastian Claici, Edward Chien, and Justin Solomon. 2018. Stochastic Wasserstein
Barycenters. arxiv:1802-05757 (2018).

Richard Condit, Peter S. Ashton, Patrick Baker, Sarayudh Bunyavejchewin, Savithri
Gunatilleke, Nimal Gunatilleke, Stephen P. Hubbell, Robin B. Foster, Akira Itoh,
James V. LaFrankie, Hua Seng Lee, Elizabeth Losos, N. Manokaran, R. Sukumar, and
Takuo Yamakura. 2000. Spatial Patterns in the Distribution of Tropical Tree Species.
Science 288, 5470 (2000).

Robert L Cook. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5,
1 (1986).

Ken Dahm and Alexander Keller. 2017. Learning Light Transport the Reinforced Way.
arXiv:1701.07403 (2017).

Sabrina Dammertz and Alexander Keller. 2008. Image Synthesis by Rank-1 Lattices. In
Monte Carlo and Quasi-Monte Carlo Methods 2006.

Fernando De Goes, Katherine Breeden, Victor Ostromoukhov, and Mathieu Desbrun.
2012. Blue noise through optimal transport. ACM Trans. Graph. 31, 6 (2012).

Zachary Devito, Michael Mara, Michael Zollhöfer, Gilbert Bernstein, Jonathan Ragan-
Kelley, Christian Theobalt, Pat Hanrahan, Matthew Fisher, and Matthias Niessner.
2017. Opt: A Domain Specific Language for Non-Linear Least Squares Optimization
in Graphics and Imaging. ACM Trans. Graph. 36, 5 (2017).

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. 2017. Density estimation using
Real NVP. In ICLR.

David P. Dobkin, David Eppstein, and Don P.Mitchell. 1996. Computing the Discrepancy
with Applications to Supersampling Patterns. ACM Trans. Graph. 15, 4 (1996).

Carola Doerr and François-Michel De Rainville. 2013. Constructing Low Star Discrep-
ancy Point Sets with Genetic Algorithms. In Proc. GECCO.

Ron O Dror, Thomas K Leung, Edward H Adelson, and Alan S Willsky. 2001. Statistics
of real-world illumination. In CVPR.

Raanan Fattal. 2011. Blue-noise point sampling using kernel density model. ACM Trans.
Graph. 30, 4 (2011).

Iliyan Georgiev and Marcos Fajardo. 2016. Blue-noise Dithered Sampling. In ACM
SIGGRAPH 2016 Talks.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In
NIPS.

John H. Halton. 1960. On the Efficiency of Certain Quasi-random Sequences of Points
in Evaluating Multi-dimensional Integrals. Numer. Math. 2, 1 (1960).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning
for image recognition. In CVPR.

Daniel Heck, Thomas Schlömer, and Oliver Deussen. 2013. Blue noise sampling with
controlled aliasing. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 3 (2013).

A.S. Hedayat, N.J.A. Sloane, and John Stufken. 1999. Orthogonal Arrays: Theory and
Applications. Springer New York.

Felix Heide, Steven Diamond, Matthias Niessner, Jonathan Ragan-Kelley, Wolfgang
Heidrich, and Gordon Wetzstein. 2016. ProxImaL: Efficient Image Optimization
Using Proximal Algorithms. ACM Trans. Graph. 35, 4 (2016).

Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar Vinacua, and Timo Ropinski.
2018. Monte Carlo Convolution for Learning on Non-uniformly Sampled Point
Clouds. ACM Trans. Graph (Proc. SIGGRAPH Asia) 37, 5 (2018).

JS Hicks and RF Wheeling. 1959. An efficient method for generating uniformly dis-
tributed points on the surface of an n-dimensional sphere. Comm. ACM 2, 4 (1959).

Wojciech Jarosz, Afnan Enayet, AndrewKensler, Charlie Kilpatrick, and Per Christensen.
2019. Orthogonal array sampling for Monte Carlo rendering. Computer Graphics
Forum (Proceedings of EGSR) 38, 4 (2019).

Min Jiang, Yahan Zhou, Rui Wang, Richard Southern, and Jian Jun Zhang. 2015. Blue
noise sampling using an SPH-based method. ACM Trans. Graph. 34, 6 (2015).

S. Joe and F. Kuo. 2008. Constructing Sobol Sequences with Better Two-Dimensional
Projections. SIAM J Scientific Comp. 30, 5 (2008).

Bhavya Kailkhura, Jayaraman J Thiagarajan, Peer-Timo Bremer, and Pramod K Varsh-
ney. 2016. Stair blue noise sampling. ACM Trans. Graph. 35, 6 (2016).

Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A Machine Learning
Approach for Filtering Monte Carlo Noise. ACM Trans. Graph. 34, 4 (2015).

Simon Kallweit, Thomas Müller, Brian Mcwilliams, Markus Gross, and Jan Novák. 2017.
Deep Scattering: Rendering Atmospheric Clouds with Radiance-predicting Neural
Networks. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 36, 6 (2017).

Alexander Keller, Simon Premoze, and Matthias Raab. 2012. Advanced (Quasi) Monte
Carlo Methods for Image Synthesis. In ACM SIGGRAPH 2012 Courses. Article 21.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
arxiv:1412.6980 (2014).

Diederik P Kingma and Max Welling. 2013. Auto-encoding variational Bayes.
arXiv:1312.6114 (2013).

Johannes Kopf, Daniel Cohen-Or, Oliver Deussen, and Dani Lischinski. 2006. Recursive
Wang tiles for real-time blue noise. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3
(2006).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classification
with Deep Convolutional Neural Networks. In NIPS.

Christopher Kulla, Alejandro Conty, Clifford Stein, and Larry Gritz. 2018. Sony Pictures
Imageworks Arnold. ACM Trans. Graph. 37, 3 (2018).

Frances Kuo. 2007. Lattice rule generating vectors. web.maths.unsw.edu.au/~fkuo.
Accessed: 2019-07-12.

Ares Lagae and Philip Dutre. 2008. A Comparison of Methods for Generating Poisson
Disk Distributions. Comp. Graph. Forum 27, 1 (2008).

Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and Jonathan Ragan-
Kelley. 2018. Differentiable Programming for Image Processing and Deep Learning
in Halide. ACM Trans. Graph. 37, 4 (2018).

Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE Trans Inform. Theory 28, 2
(1982).

Benoit B Mandelbrot. 1983. The fractal geometry of nature. WH Freeman New York.
Michael McCool and Eugene Fiume. 1992. Hierarchical Poisson disk sampling distribu-

tions. In Proc. Graphics interface.
Don P. Mitchell. 1992. Ray Tracing and Irregularities of Distribution. In In Third

Eurographics Workshop on Rendering.
Scott A. Mitchell, Mohamed S. Ebeida, Muhammad A. Awad, Chonhyon Park, Anjul

Patney, Ahmad A. Rushdi, Laura P. Swiler, Dinesh Manocha, and Li-Yi Wei. 2018.
Spoke-Darts for High-Dimensional Blue-Noise Sampling. ACM Trans. Graph. 37, 2
(2018).

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Nov’ak.
2018. Neural Importance Sampling. arXiv:1808.03856 (2018).

Jeffrey B Mulligan and Albert J Ahumada. 1992. Principled halftoning based on human
vision models. In Human Vision, Visual Processing, and Digital Display III, Vol. 1666.

Oliver Nalbach, Elena Arabadzhiyska, Dushyant Mehta, Hans-Peter Seidel, and Tobias
Ritschel. 2017. Deep Shading: Convolutional Neural Networks for Screen-Space
Shading. Comp. Graph. Forum (Proc. EGSR) 36, 4 (2017).

Harald Niederreiter. 1978. Quasi-Monte Carlo methods and pseudo-random numbers.
Bull. Amer. Math. Soc. 84, 6 (1978).

H. Niederreiter. 1992. Random Number Generation and Quasi-Monte-Carlo Methods.
SIAM.

Dirk Nuyens. 2013. The construction of good lattice rules and polynomial lattice rules.
arXiv:1308.3601 (2013).

Deussen Oliver, Hiller Stefan, Van Overveld Cornelius, and Strothotte Thomas. 2001.
Floating Points: A Method for Computing Stipple Drawings. Computer Graphics
Forum 19, 3 (2001).

Victor Ostromoukhov, Charles Donohue, and Pierre-Marc Jodoin. 2004. Fast hierarchical
importance sampling with blue noise properties. ACM Trans. Graph. 23, 3 (2004).

Art B. Owen. 1997. Monte Carlo Variance of Scrambled Net Quadrature. SIAM J. Numer.
Anal. 34, 5 (1997), 27.

A Cengiz Öztireli. 2016. Integration with stochastic point processes. ACM Trans. Graph.
35, 5 (2016).

A Cengiz Öztireli and Markus Gross. 2012. Analysis and synthesis of point distributions
based on pair correlation. ACM Trans. Graph. 31, 6 (2012).

Hélène Perrier, David Coeurjolly, Feng Xie, Matt Pharr, Pat Hanrahan, and Victor
Ostromoukhov. 2018. Sequences with Low-Discrepancy Blue-Noise 2-D Projections.
Comp. Graph. Forum (Proc. Eurographics) 37, 2 (2018).

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering:
From Theory To Implementation (3rd ed.). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

Adrien Pilleboue, Gurprit Singh, David Coeurjolly, Michael Kazhdan, and Victor Ostro-
moukhov. 2015. Variance analysis for Monte Carlo integration. ACM Trans. Graph.
34, 4 (2015).

Charles R Qi, Hao Su, KaichunMo, and Leonidas J Guibas. 2017. Pointnet: Deep learning
on point sets for 3D classification and segmentation. CVPR (2017).

Hongxing Qin, Yi Chen, Jinlong He, and Baoquan Chen. 2017. Wasserstein Blue Noise
Sampling. ACM Trans. Graph. 36, 5 (2017).

Bernhard Reinert, Tobias Ritschel, Hans-Peter Seidel, and Iliyan Georgiev. 2016. Projec-
tive Blue-Noise Sampling. Comp. Graph. Forum 35, 1 (2016).

Peiran Ren, Yue Dong, Stephen Lin, Xin Tong, and Baining Guo. 2015. Image Based
Relighting Using Neural Networks. ACM Trans. Graph. 34 (2015).

Danilo Jimenez Rezende and Shakir Mohamed. 2015. Variational inference with nor-
malizing flows. arXiv:1505.05770 (2015).

Christian Schmaltz, Pascal Gwosdek, Andres Bruhn, and Joachim Weickert. 2010. Elec-
trostatic Halftoning. Comp. Graph. Forum (2010).

David W Scott. 1979. On optimal and data-based histograms. Biometrika 66, 3 (1979).
Adrian Secord. 2002. Weighted Voronoi stippling. In Proc. NPAR.
Peter Shirley. 1991. Discrepancy as a quality measure for sample distributions. In Proc.

Eurographics.

ACM Trans. Graph., Vol. 38, No. 6, Article 226. Publication date: November 2019.

web.maths.unsw.edu.au/~fkuo

Deep Point Correlation Design • 226:17

Eero P Simoncelli and Bruno A Olshausen. 2001. Natural image statistics and neural
representation. Ann. Review Neuroscience 24, 1 (2001).

Gurprit Singh and Wojciech Jarosz. 2017. Convergence Analysis for Anisotropic Monte
Carlo Sampling Spectra. ACM Trans. Graph. (Proc. SIGGRAPH) 36, 4 (2017).

Gurprit Singh, Cengiz Oztireli, Abdalla G.M. Ahmed, David Coeurjolly, Kartic Subr,
Oliver Deussen, Victor Ostromoukhov, Ravi Ramamoorthi, and Wojciech Jarosz.
2019a. Analysis of Sample Correlations for Monte Carlo Rendering. Comp. Graph
Form. (Proc. EGSR) 38, 2 (2019).

Gurprit Singh, Kartic Subr, David Coeurjolly, Victor Ostromoukhov, and Wojciech
Jarosz. 2019b. Fourier Analysis of Correlated Monte Carlo Importance Sampling.
Comp. Graph. Forum 38, 1 (2019).

I.H. Sloan and S. Joe. 1994. Lattice methods for multiple integration. Clarendon Press.
I. M. Sobol. 1967. The distribution of points in a cube and the approximate evaluation

of integrals. U. S. S. R. Comput. Math. and Math. Phys. 7 (1967).
Kartic Subr and Jan Kautz. 2013. Fourier analysis of stochastic sampling strategies for

assessing bias and variance in integration. ACM Trans. Graph. 32 (2013).
Robert A Ulichney. 1988. Dithering with blue noise. Proc. IEEE 76, 1 (1988).
Florent Wachtel, Adrien Pilleboue, David Coeurjolly, Katherine Breeden, Gurprit Singh,

Gaël Cathelin, Fernando De Goes, Mathieu Desbrun, and Victor Ostromoukhov.
2014. Fast tile-based adaptive sampling with user-specified Fourier spectra. ACM
Trans. Graph. 33, 4 (2014).

Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun.
2018b. Deep parametric continuous convolutional neural networks. In CVPR.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and
Justin M. Solomon. 2018a. Dynamic Graph CNN for Learning on Point Clouds.
arxiv:1801.07829 (2018).

Li-Yi Wei and Rui Wang. 2011. Differential domain analysis for non-uniform sampling.
ACM Trans. Graph. 30, 4 (2011).

Dong-Ming Yan, Jian-Wei Guo, Bin Wang, Xiao-Peng Zhang, and Peter Wonka. 2015.
A survey of blue-noise sampling and its applications. J Comp. Sci. and Tech. 30, 3
(2015).

John I Yellott. 1983. Spectral consequences of photoreceptor sampling in the rhesus
retina. Science 221, 4608 (1983).

Quan Zheng and Matthias Zwicker. 2018. Learning to Importance Sample in Primary
Sample Space. arxiv:1808.07840 (2018).

Yahan Zhou, Haibin Huang, Li-Yi Wei, and RuiWang. 2012. Point sampling with general
noise spectrum. ACM Trans. Graph. 31, 4 (2012).

Zhi-Hua Zhou. 2017. A brief introduction to weakly supervised learning. National
Science Review 5, 1 (2017).

A GRADIENTS
Our unstructured filters (Eq. 3) can be used directly in a trivial
TensorFlow implementation. However, we found this to execute
much slower than a hand-crafted C++ implementation and most
of all required memory in the order of O(m2). We here give the
derivation required to implement our filter as a custom operation: a
forward pass to filter points (F Eq. 3) and the derivative passes in
respect to kernel weights parameters (∂L/∂θ , Eq. 3) and input point
positions (∂L/∂x, Eq. 3).
Both the forward pass and the backward pass are implemented

parallel over all points xi . Each point sequentially iterates all neigh-
bors xi, j . Distances di j are computed and the weights θ are indexed
at ⌈di j ⌉ and ⌊di j ⌋, interpolated, and applied to the offsets xi ⊖ xj .
The backward pass requires the derivative of the loss L of Eq. 3

in respect to the l-th weight θ , which is

∂L

∂θl
=
∑
i

∑
j,i

∂д(dji |θ)

∂θl

1
di j

〈
xi ⊖ xj ,

∂L

∂(F (x|θ))i

〉
a b-dimensional vector, where dab = | |xa ⊖ xb | |. Here,

∂

∂θl
д(d |θ) =

1 − frac(d̂) if ⌊d̂⌋ = l
frac(d̂) if ⌈d̂⌉ = l
0 else

,

where d̂ = d ·b/r is the index scaled by receptive field and bin count
and frac(d̂) returns the fractional part of a real d̂ . The derivative of

Eq. 3 in respect to the k-th dimension of the i-th input point is
∂L

∂xi,k
=

∂L

(∂F (x|θ))i,k
+〈∑

j,i

∂⊗ji

∂xi,k
,

∂L

(∂F (x|θ))i

〉
+

∑
j,i

〈
∂⊗i j

∂xi,k
,

∂L

(∂F (x|θ))j

〉
where ⊗ba is the pairwise interaction between point b and a

⊗ba = д(| |xb ⊖ xa | |2 |θ)
xb ⊖ xa

| |xb ⊖ xa | |
that has the derivative
∂⊗ba
∂xb,k

=
1

d2ba
(
1 − b

r
(w

⌈d̂ ⌉ −w
⌊d̂ ⌋)(xb,k ⊖ xa,k)(xb ⊖ xa)+

д(dba |θ) · (
(xb,k ⊖ xa,k)(xb ⊖ xa)

dba
− 1kdba)),

where 1k is a one-hot vector. Finally, ∂⊗ba/∂xa,k = −∂⊗ba/∂xb,k .

B SYMBOLS

Table 1. Symbols used in this work.

Symbol Meaning Domain
b Number of kernel bins Z+

d Offset Rn

F Filter Rn → Rn

д Kernel R≥0 → R

h Unique kernel R≥0 → R

l Number of filters Z+

lu Number of unique kernels Z+

L Loss Rn×m → R≥0
H Histogram R

nc
≥0

κ Correlation function (Rn ×Rn) → R

m Number of points Z+

M Weight matrix Rs×s

n Number of dimensions Z+

na Radial average resolution Z+

nc Point correlation resolution Z+

Normal distribution N

Hypersphere Ω
P Point correlation

(
Rn×m ×Rn) → R≥0

P Pipeline Rn×m → Rn×m

q Correlate Rn

r Receptive field R≥0
ρ Correlation radius R≥0
s Number of subspaces Z+

S Spectrum R
nc
≥0

θ Learnable parameters Rb×lu×s

Uniform distribution U

x Point Rn

X Point set Rn×m

ACM Trans. Graph., Vol. 38, No. 6, Article 226. Publication date: November 2019.

	Abstract
	1 Introduction
	2 Point Patterns in Computer Graphics
	2.1 Correlated Patterns
	2.2 Subspaces
	2.3 Learning
	2.4 Domain-specific languages

	3 Overview
	4 Point Correlation Losses
	4.1 Notation
	4.2 Point correlation
	4.3 Spectrum
	4.4 Differential domain
	4.5 Radial mean
	4.6 Swizzle
	4.7 Metrics

	5 Point patterns via Iterated Filtering
	5.1 Architecture
	5.2 Filters
	5.3 Training

	6 Results
	6.1 Spectral and differential analysis
	6.2 Error Analysis
	6.3 Learning Sampling MC from Integrand Statistics
	6.4 Scalability
	6.5 Stability
	6.6 Choice of metrics
	6.7 MLP comparison
	6.8 Applications

	7 Discussion and Limitations
	8 Conclusion
	Acknowledgments
	References
	A Gradients
	B Symbols

