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Abstract— Multi-focal plane and multi-layered light-field displays are promising solutions for addressing all visual cues observed
in the real world. Unfortunately, these devices usually require expensive optimizations to compute a suitable decomposition of the
input light field or focal stack to drive individual display layers. Although these methods provide near-correct image reconstruction, a
significant computational cost prevents real-time applications. A simple alternative is a linear blending strategy which decomposes a
single 2D image using depth information. This method provides real-time performance, but it generates inaccurate results at occlusion
boundaries and on glossy surfaces. This paper proposes a perception-based hybrid decomposition technique which combines the
advantages of the above strategies and achieves both real-time performance and high-fidelity results. The fundamental idea is to apply
expensive optimizations only in regions where it is perceptually superior, e.g., depth discontinuities at the fovea, and fall back to less
costly linear blending otherwise. We present a complete, perception-informed analysis and model that locally determine which of the
two strategies should be applied. The prediction is later utilized by our new synthesis method which performs the image decomposition.
The results are analyzed and validated in user experiments on a custom multi-plane display.
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1 INTRODUCTION

In recent years, head-mounted displays (HMDs) have emerged as a
major virtual (VR) and augmented reality (AR) technology and cur-
rently they have many potential applications in a diverse set of fields
including gaming, video, medicine, simulation and aviation. Stereo
HMDs can display 3D content with binocular disparity, which is one
of the critical cues for stereopsis and depth perception of the brain. As
the use of binocular disparity in HMDs has already been successfully
commercialized, research efforts are recently getting directed towards
enhancing 3D perception by introducing a support for other types of
cues. A critical requirement for a faithful reconstruction of virtual
3D content is the reproduction of correct accommodation cues, which
allows a natural depth perception by triggering changes in the focal
distance of the eye [5, 21]. However, developing HMDs with correct
accommodation cues is an extremely challenging task due to the limita-
tions imposed by optics on the hardware design. Any improvement in
this direction must satisfy the requirements from a consumer product
such as having a small form factor but usually there is a trade-off be-
tween these requirements and optical capabilities of the display such as
the field of view (FOV) and display resolution [13]. In addition to these
hardware challenges, generating 3D content for such displays is another
important issue since it requires efficient processing of a larger amount
of data compared to 2D images. Furthermore, there is always a concern
of having compatibility with different display architectures [19].

Recent studies have shown that multi-layer displays, such as multi-
plane displays or light-field displays, are practical solutions for HMDs
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to provide near-correct accommodation cues [13, 19]. A crucial step of
rendering in a multi-layered system is the decomposition of an input
scene into layers for a correct 3D perception [37]. The most straight-
forward decomposition method is linear blending (LB), where the
input is a single viewpoint image with a depth map [2, 29]. Although
this technique is computationally efficient, it usually fails at occlusion
boundaries or non-Lambertian surfaces. To overcome this limitation,
two approaches have been proposed: retinal optimization (RO) [35, 37]
and light-field synthesis (LFS) [16, 25], which optimize the decompo-
sition based on a focal stack and a 4D light field, respectively. The
improved quality comes at a high computational cost of the optimiza-
tion (5 Hz at 512×512 resolution as reported by Mercier et al. [35])
and input generation. In addition, although these techniques perform
better at occlusion boundaries [48], they may perform worse in driving
the eye accommodation [35].

In order to combine the desired features of different algorithms, the
most promising solution would be designing a hybrid decomposition
technique. Such an approach could select the decomposition method
locally depending on the scene content in order to obtain the best per-
ceptual quality possible. For real-time rendering applications, this type
of hybrid decomposition has to be implemented efficiently. Thanks to
the recent developments in GPU hardware, new cards introduce sepa-
rate cores for massively computational tasks (e.g. recently announced
Nvidia RTX platform) which encourages such content-dependent local
optimizations to be performed in parallel to the traditional graphics
pipeline. However, in order to propose a robust hybrid algorithm, a
clear understanding of the perceptual quality differences among various
decomposition methods is required. So far, there has been very little
research comparing the visual quality of LB, LFS and RO methods. In
addition, the conditions which lead to failure of LB method at occlusion
boundaries are not thoroughly investigated in previous works.

To address these issues, we provide a perceptual evaluation of dif-
ferent decomposition methods and propose a perception-driven hybrid
decomposition technique. In the first part of our paper, as a prelimi-
nary step towards the hybrid decomposition, we introduce an improved
gaze-contingent LFS method that generates the input viewpoints ex-
clusively inside the pupil. We demonstrate that this solution achieves
similar results to RO but with a significantly lower amount of com-
putational cost. Consequently, we focus on the gaze-contingent LFS,
and omit RO in our considerations. In the second part, we propose a
perceptual evaluation methodology to determine for which multi-plane
display configurations and scene content the inexpensive LB can be
applied without a loss of visual quality and when the gaze-contingent
LFS is necessary. In our analysis, we focus on texture and occlusion



boundaries which are important for driving accommodation [29, 33]
and depth order perception [48]. We derive the detection thresholds
through a series of perceptual experiments, which allows us to establish
the selection rule for the decomposition algorithm such that:

1. when LB and LFS are visually indistinguishable, we select the
LB, and

2. when LB and LFS are distinguishable, we choose the method
which yields results closer to the ground truth.

Based on the selection rule, we describe the hybrid decomposition
approach which combines linear blending and light-field synthesis
methods. To further improve the performance, we also take the foveal
and peripheral vision characteristics into account. Consequently, we
propose a content-dependent and gaze-contingent hybrid decomposition
algorithm for multi-layered accommodative displays, which enables
real-time rendering performance and high-quality reconstruction.

The main contributions of this work are:

• a gaze-dependent viewpoint sampling of LFS for enhanced recon-
struction quality,

• a series of targeted perceptual experiments that measure the dif-
ferences in the visual quality obtained by LB and LFS for various
spatial frequencies, luminance contrasts, depth configurations,
and eccentricities,

• a domain-specific structural similarity index (SSIM) calibration
for visible difference prediction between the LB and LFS that
generalizes perceptual insights beyond the scope of the perceptual
experiments,

• a unified optimization framework for the LB and LFS decomposi-
tions,

• an efficient adaptation of the simultaneous algebraic reconstruc-
tion technique (SART) to CUDA for the real-time decomposition.

2 BACKGROUND AND PREVIOUS WORK

In this section, we give an overview of near-eye displays supporting
accommodation cues, image decomposition algorithms targeted for
such displays, as well as selected aspects of foveated rendering that are
central for this work.

2.1 Accommodative near-eye displays
Multi-plane displays Multi-plane displays project images on dif-

ferent depth planes and form near-correct 3D volumetric images. The
system architecture can be classified into two categories: systems
based on time-multiplexing with switchable lenses [12, 28] or systems
based on beam splitters and multiple physical screens [2, 29]. Time-
multiplexing systems can be designed in smaller form factors, but
the requirement for high-refresh-rate screens and fast tunable-focus
devices is a major obstacle. Although multi-screen systems have a
major drawback in its large form factor, they offer a larger FOV than
time-multiplexing systems. Therefore, we employ this design to test
our rendering strategy. Another major obstacle of both architectures
is the requirement for eye tracking since the images are generated for
a fixed viewing position. Recently, focal surface displays have been
developed to represent continuous 3D imagery [34]. They eliminated
the need for eye tracking in the case of single plane generation, but they
are computationally demanding and based on expensive LCoS SLMs.
Another approach to avoid the eye-tracking is to perform per-region
optimization at multiple gaze points, but it requires costly optimization
and precise calibration of the eye rotation axis [24]. Since eye-tracking
is an essential component in practical multi-plane system settings, we
exploit the eye-tracking system further to develop foveated rendering
strategy.

Light-field displays The light-field display controls the 4D ray
space of the light generated by the display to produce the motion
parallax and vergence cues. Recently, light-field displays supporting
focus cues have been proposed based on microlenses [14,22]. However,

those designs have an intrinsic trade-off between the angular and spatial
resolution. Light-field displays based on multi-layered architecture [15,
30, 36] have been demonstrated as an efficient platform for providing
focus cues. Our rendering strategy is mainly built on the principle of
additive light-field displays with accommodation cues [36].

Other methods Holographic displays can project a replica of
real-world scenes and provide accurate focus cues [47]. However, the
limited pixel size and resolution of digital wavefront modulators impose
a significant trade-off between the eyebox size and FOV [31]. Another
approach is to change the depth of 2D image plane dynamically with
focus-tunable devices [3, 8]. Although viewers can observe the images
with correct accommodation cues, the requirement for a dynamic sys-
tem may lead to latency issues. Instead of generating complete focus
cues, the vergence-accommodation conflict also can be alleviated by
projecting all-in-focus images [17]. However, this method has a trade-
off between the spatial resolution and the reproducible focus range.
Recently, it is also demonstrated that proper rendering of chromatic
aberration can effectively trigger accommodation without changing
optical focus cues [6].

2.2 Decomposition algorithms for multi-layered displays
Light-field displays In multi-layered light-field displays, the light

fields are parametrized by a group of pixels on multiple layers. For
multiplicative displays, the optimization system is described in tensor
form and solved by various factorization algorithms [16, 45]. Additive
light-field displays based on the polarization LCDs [23] or incoherent
summation of pixel intensities reflected from holographic optical ele-
ments [24] have also been proposed. For those architectures, LFS is
formulated with a linear least-squares error problem and solved with
the simultaneous algebraic reconstruction technique (SART) for online
calculation [4] or the trust-region method [7] for offline calculation. In
LFS, generation of target light fields requires high computational cost,
and real-time performance is only possible by reducing the number of
iterations [16, 23]. To enhance the rendering speed, an adaptive sam-
pling strategy was proposed [11], but the performance improvement
was only demonstrated for offline rendering scenarios. Our method
saves the computational cost both in generating the target light fields
and in decomposition through selective rendering and optimization.
Furthermore, the modified formulation of the SART adapted to CUDA
enables us to achieve the real-time rendering with good quality.

Multi-plane displays In multi-plane displays, the linear blending
rule assigns pixel values proportional to the distance between a target
point and display planes [2]. Although it can effectively trigger accom-
modation [29], occlusion boundaries and non-Lambertian surfaces are
imperfectly rendered in LB due to the simple consideration of a single
image and depth map. In order to correctly generate artifact-free scenes,
the retinal optimization (RO) [35, 37] which optimizes a focal stack
has been proposed. However, the target focal stack in fact implicitly
contains the 4D light-field information [27]. Therefore, LFS which op-
timizes the 4D light fields also can be employed in multi-plane display
architecture. We provide a short mathematical derivation of the RO
in the context of LFS in Supplementary Information A. Our method
is based on LFS since the implementations of current LFS algorithms
are demonstrated to be more efficient than RO. We also revisit LFS in
the context of gaze-contingent rendering for improving the perceived
image quality and reducing the computational cost.

2.3 Foveated rendering
Foveated rendering uses gaze information to improve rendering effi-
ciency by reducing quality for the periphery. This is usually achieved by
reducing the density of rendered image samples with increasing eccen-
tricity [10,38,41]. In accommodative light field displays, Sun et al. [40]
propose a foveated rendering solution, which accounts for depth infor-
mation and the current state of the accommodation to choose optimal
ray directions in the OptiX renderer. In our work, the ray selection is
dictated by the choice of local decomposition technique for multi-plane
displays and supported by an analysis of local luminance contrast and
visibility of artifacts caused by the LB.
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Fig. 1: Overview of the methodology in our work. We study 3D scenes based on texture and depth discontinuity. The limited cases are investigated
with perceptual experiments and extended to the general cases through the prediction using custom calibrated SSIM. We derive the selection rules
from the predicted distinguishablity between LB and LFS and closeness to the ground truth obtained by SSIM analyses. Then, we finally develop
the hybrid optimization framework based on the selection rules.

3 OVERVIEW

We develop the perceptual evaluation methods and the hybrid decompo-
sition of a gaze-contingent LFS (Sect. 4) and LB. Our analysis pipeline
is outlined in Fig. 1. We analyze the 3D scenes based on texture
(Sect. 5) and depth discontinuity (Sect. 6), which are important for
quality perception and driving accommodation. Ideally, we aim to test
all possible scenarios through the perceptual experiments. However,
since the parametric space of texture and depth discontinuity is vast,
we perform the perceptual experiments on distinguishability between
LFS and LB in a limited parametric space. To explore the full space,
we calibrate a visual quality metric SSIM [42] to predict the exper-
imental outcomes and predict the distinguishability in general cases.
Our employment of SSIM is motivated by a recent study showing that
advanced metrics such as SSIM and HDR-VDP [32] provide a sim-
ilar and good prediction on a narrow, well-defined task after proper
training and calibration with relevant perceptual data [1]. Specifically,
the perceptual experiments are conducted for flat textured surfaces in
Sect. 5.1 and depth discontinuities at small eccentricities in Sect. 6.1.
Through the calibrations of SSIM in Sect. 5.2 and Sect. 6.3, we predict
the distinguishability in general cases such as slanted textured surfaces
in Sect. 5.4 or depth discontinuities at large eccentricities in Sect. 7.1.
For selecting a proper algorithm when LFS and LB are distinguishable,
we perform SSIM analysis to find the algorithm closer to the ground
truth in Sect. 5.3 and Sect. 6.2. Finally, we choose the best decompo-
sition algorithm, which is LB for textured surfaces and LFS for depth
discontinuities depending on depth difference, luminance contrast and
eccentricities. Since the transition between LFS and LB is required
at depth discontinuity, we develop the selection rule in Sect. 7.1 and
propose the hybrid optimization framework in Sect. 7.2.

4 GAZE-CONTINGENT LIGHT FIELD SYNTHESIS

For our hybrid decomposition strategy, we evaluated the existing decom-
position methods for multi-layer displays with respect to computational
complexity and visual quality criteria. LB is a fast decomposition
method, and it is suitable for the regions where an accurate recon-
struction is not required. On the other hand, when a high quality
reconstruction is required, the hybrid decomposition algorithm should
select more complex methods such as LFS and RO. While LFS recon-
structs a sparse set of lightfield views, RO reproduces a focal stack
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Fig. 2: Contrast curves for various optimization algorithms for various
spatial frequencies. While LFS with large eye box exhibits significant
contrast reduction for high spatial frequencies, gaze-contingent LFS
shows much higher contrast values over the entire frequency range,
providing similar quality to LB or RO.

rendered from dense light fields inside the pupil. Although LFS is
computationally more efficient than RO, a recent study shows that LFS
suffers from contrast degradation and RO might be a better alternative
for preserving the contrast [24]. However, our insight is that the loss
of contrast in LFS mainly originates from using a wide eye box which
is larger than the pupil size, where some of the viewpoints fall outside
observer’s pupil [16, 24]. On the contrary, RO provides a higher level
of contrast by rendering the dense light fields exclusively inside the
pupil and further processing them to generate focal images at multiple
depths.

Both LFS and RO might be used to produce high quality outputs
when required by a hybrid decomposition algorithm. But the issue of
contrast degradation has to be addressed to get the benefit of LFS. To
this end, we propose a gaze-contingent viewpoint sampling approach
to enhance LFS image quality compared to the implementation using
a wide eye box. Our approach is to generate light-field viewpoints
only inside the pupil, using the pupil position from an eye tracker. This
solution effectively avoids the contrast degradation in LFS method. The
gaze-contingent method requires the addition of an eye tracker device
to the hardware but as we discussed in Sect. 2, this requirement applies
to any practical decomposition method for multi-focal displays.

We validate the quality of the proposed gaze-contingent LFS method
using simulated contrast curves of the reconstructed images from vari-
ous decompositions (Fig. 2). The contrast curves show the magnitude
of luminance contrast for different spatial frequencies with respect to
accommodation depth. In accommodative displays, the contrast of
the images should be maximized at the object plane because a higher
gradient of the contrast curve more effectively drives the accommo-
dation toward the object plane [39]. In order to obtain the contrast
curves, we first generate retinal images at various focal depths between
1.4 D and 2 D. We chose the 0.6 D gap since it is widely used to at-
tain sufficient resolution for triggering accommodation at intermediate
planes and minimizing the number of display planes [29]. Then we use
Fourier transform to extract the luminance values at the target spatial
frequency. Finally, we normalize all values with the peak value of
the contrast curve of the ground truth. A similar analysis has been
performed by Lee [24]. We analyze the ground truth, gaze-contingent
LFS, LFS with large eye box, LB and RO. During our evaluations,
we set the number viewpoints to 13 inside a 4 mm-diameter pupil for
gaze-contingent LFS. We empirically found that using larger number
of views does not improve the image quality for gaze-contingent LFS.
The large eye box case assumes 5×5 viewpoints inside an 8×8 mm
eye box. The sinusoidal patterns of various spatial frequencies are
projected in the middle plane between two display layers placed at
1.4 D and 2 D, respectively. The resolution is set to 15 cpd, which is
the maximum resolution supported by our display. The analysis shows
that LFS with a large eye box significantly degrades the quality beyond
approximately 6 cpd. In contrast, the gaze-contingent LFS provides a
quality comparable to RO or LB for 3–9 cpd, which is the critical range
for driving accommodation [29, 33]. The noticeable deviations are
observed for high spatial frequencies; however, all algorithms already
fail to reproduce the correct contrast curve due to the limited frequency
support of the display. The maximum reproducible frequency increases
as the display separation decreases [37]. Therefore, we can conclude
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that the gaze-contingent LFS attains the quality offered by RO and is
suitable for using with LB in a hybrid decomposition approach. From
now, we refer to gaze-contingent LFS simply as LFS.

5 EFFECT OF TEXTURE ON DECOMPOSITION

LB method performs poorly in regions which are affected by occlu-
sion [37]. However, it preserves the contrast relatively well in other
regions (see Fig. 2). Therefore, the use of LB still can be a good option
on textured regions except at those problematic regions around occlu-
sion boundaries where LFS gives a better result than LB. The previous
work shows that the difference between the two methods is noticeable
when the content has high spatial frequencies [37]. Motivated by this
observation, we aim to find the spatial frequency threshold where we
should switch from one decomposition method to the other in order
to get the optimal quality. Our analysis includes showing both flat
and slanted surfaces with various slopes. We first conduct perceptual
experiment to investigate the conditions when two algorithms are in-
distinguishable for an observer viewing flat surfaces on our prototype
display. Then, we perform an analysis using an objective quality metric
in order to generalize our findings to slanted surfaces. In addition to
allowing the evaluation of different scene configurations, use of an ob-
jective metric helps avoiding any issues due to the lack of ground truth
as well. Unfortunately, there is not a domain-specific metric designed
for such an evaluation. Therefore, we take an existing full-reference
quality metric and calibrate it using the data obtained from our percep-
tual experiments. For this purpose, we use the Structural Similarity
(SSIM) metric which is widely used for the objective evaluation of
visual quality in other domains [42].

5.1 Perceptual experiment
We conducted the perceptual experiment on a two-plane prototype
display in a monocular viewing setting. The stimuli consists of two
pairs of flat sinusoidal patterns. One pair contains two identical patterns
generated using only LFS, and the other pair contains two different
patterns generated using LFS and LB. In the experiment, we used two-
alternative forced choice (2AFC) procedure and asked the participants
to select the pair of patterns which looks different from each other.
While two pairs are shown at the top and bottom positions, the order
of patterns is completely randomized among trials. We computed
the probability of detection from the number of correct responses for
different combinations of Michelson contrast, stimuli depth and spatial
frequencies from 6 to 15 cpd. Fig. 3(a) shows representative stimuli
used in our experiment, where the LB stimulus has a red frame around
the pattern. For that stimuli, the correct response is the top pair. In total,
five participants took the experiment. All participants were naı̈ve, paid,
and have normal or corrected-to-normal vision. The display resolution
is 15 cpd and the display separation is set to 0.6 D. Please see Sect. 8.2
for more details on the experimental setup.

We take the frequency which corresponds to 75% detection probabil-
ity as the detection threshold, which is computed by fitting a psychome-
tric sigmoidal function to the collected data. The detection probabilities
from the experiment and fitted sigmoids are shown in Fig. 3 (b-c). Fig. 3
(b) is obtained for various depths of the stimuli, while the Michelson
contrast is fixed at 1. The depth is measured as the distance from
the front display, where 0.3 D corresponds to the middle plane. The

frequency threshold has the smallest value for the middle plane stim-
uli, where the reconstruction quality of decomposition algorithms is
the lowest [29, 37]. Fig. 3 (c) shows the results for various contrasts,
while the stimuli depth is fixed to 0.3 D. These results indicate that the
frequency threshold increases as the contrast decreases.

5.2 Calibrating SSIM

The above experiment considers only a small subset of different texture
and depth configurations which can occur in complex scenes. One
option to investigate a wider range of stimuli is performing more exten-
sive perceptual experiments. Instead, in this work, we propose to rely
on image quality metrics which have been recently demonstrated to be
successful in simulating visibility of different artifacts when calibrated
on a problem-specific dataset [1, 46]. Consequently, we adapt SSIM
metric for predicting distinguishability between LFS and LB methods
and use it in further investigation. An additional and critical benefit of
such a strategy is that it also allows us to compare the decomposition
techniques to ground-truth images. This is challenging using perceptual
experiments due to the lack of a reference light-field display.

Our SSIM-based metric takes as an input two perceived images,
simulated for a specific focus, and computes an SSIM map. The metric
later takes the minimum value of the map as the dissimilarity measure
between the two images. We first use this procedure to simulate the
previous experiment. To this end, we computed the dissimilarity index
between LFS and LB methods for different combinations of luminance
contrast, frequency, and depth, assuming that the observer focuses on
the target object plane. Fig. 4 (a) and (b) show the results for the stimuli
when the Michelson contrast of the stimuli is fixed to 1 and 0.5. Smaller
values of the maps indicate a larger difference between the results of the
two methods. Similar to the result in Fig. 3 (b), the transition behavior is
observed around 12 cpd for the middle plane (0.3 D), and the transition
point moves towards higher frequencies for stimuli closer to the display
plane. Fig. 4 (b) reveals that the SSIM values overall increase for lower
luminance contrast, which is in agreement with Fig. 3 (c).

To use the metric as a visibility predictor, we seek an SSIM threshold
such that it corresponds to the visibility threshold. In other words,
all the image regions for which the SSIM index is above the SSIM
threshold should contain only invisible differences while the regions
with smaller SSIM values contain visible differences. We determine the
optimal SSIM threshold as the value which minimizes the RMS error
between the predicted and measured frequency thresholds obtained in
the experiment in Sect. 5.1 . The lowest error was obtained for the
SSIM threshold 0.9. The rest of our evaluations are based on this value.

5.3 Comparison with ground truth

We apply SSIM analysis to select the algorithm which is closer to the
simulated ground truth. We first obtain two SSIM maps in the same
way as Fig. 4 (a) by comparing LFS with ground truth, and LB with
ground truth. Then we take the pixel-wise difference between the SSIM
map of LFS and LB. The result is shown in Fig. 4 (d). We observe that
LB is better at reproducing the ground truth in the region inside the
dashed half-circle, where LFS and LB are distinguishable according
to our previous analysis. Outside this region, LFS performs better
particularly at low frequencies, but it is still acceptable to use LB due
to indistinguishability.

Interestingly, these results suggest that the computationally efficient
LB provides higher fidelity reconstruction compared to the computa-
tionally expensive LFS on high spatial frequencies. Although previous
study [37] and our analysis (Fig. 2) suggest that such high contrast
reconstruction can lead to incorrect contrast curve, the eye accom-
modation is dominantly driven by 4-8 cpd and the failures of LB in
reproducing contrast gradient at high frequencies are negligible [29].
Furthermore, it should be noted that even LFS or RO fail to reproduce
the correct contrast curves in such cases, as shown in Fig. 2. Therefore,
we choose LB as the best algorithm which provides high contrast in
retinal images.
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5.4 Generalization to slanted surfaces
In many studies, the quality of reconstruction has been tested on planar
surfaces at a fixed depth [24, 29, 37]. However, most 3D scenes con-
tain various slanted surfaces. Here, we extend our analysis to slanted
surfaces with various slopes. At each spatial frequency, we generate
slanted surfaces up to the maximum slope of 0.1 D/pixel. In our display
prototype with the 0.6 D separation, this maximum slope corresponds
to a 6-pixel-wide slanted surface extending from the front display to
the back display. Since a fewer number of pixels cannot fully represent
one cycle of the minimum spatial frequency, we regard steeper surfaces
as occlusion boundaries. In the previous analysis of flat surfaces, we
compared the focal images at the target stimulus plane. In the presence
of a slanted surface, however, the reconstruction quality should be
checked at every possible focal state. Therefore, we first compute 7
focal images between two layers with a step size of 0.1 D. For each
focal image of each algorithm, we find the minimum SSIM value in
the comparison against the ground truth focal image. Among all focal
depths, we again select the minimum SSIM to find the worst case.
Then we take difference between the SSIM map of LFS and LB to
compute the closeness to the ground truth, as shown in Fig. 4 (e). The
border of the distinguishable region is indicated with the gray dashed
line. Similar to the flat surfaces, two methods are distinguishable for
high spatial frequency texture at low slopes. Inside this distinguishable
region, LB still performs better than LFS.

In summary, our analyses reveal that for flat and slanted surfaces
with sinusoidal patterns as textures, LB and LFS methods are distin-
guishable only for high spatial frequency textures, and LB provides the
higher fidelity reconstruction when they are distinguishable. Since this
holds for foveal vision, it is evident that the same algorithm holds for
peripheral vision because contrast sensitivity declines in the peripheral
region.

6 EFFECT OF DEPTH DISCONTINUITY ON DECOMPOSITION

Another factor which affects the decomposition quality is the depth
difference between two surfaces with an occlusion boundary. Here, we
investigate the distinguishability between LFS and LB as a function
of depth difference, luminance contrast, and eccentricity. Contrary
to the analysis on spatial frequency in Sect. 5, we found that LFS is
always closer to the ground truth compared to LB, but we are aiming
to clearly identify the conditions in which LB can still be employed
without causing any visible loss of quality.

6.1 Perceptual experiment
Similar to the perceptual experiment in Sect. 5.1, we follow 2AFC pro-
cedure and ask the participants to select the pair consisting of different
patterns. For each luminance contrast and eccentricity, we employ the
Quest procedure to find the threshold of depth difference at which LB
becomes distinguishable [44]. The depth difference ranges from 0.05 D
to 0.6 D with a 0.05 step size. Two representative stimuli are illustrated
in Fig. 5 (a). While the foreground objects are fixed on the front display,
we change the depth of occluded objects. For the experiments at higher
eccentricities, the gaze direction is guided by a target green cross and
observers’ gaze position is monitored using the eye tracker. In order to

avoid incorrect measurements due to accidental glances, the stimulus is
hidden when the gaze position slightly deviates from the target cross.
The whole set of stimuli spans 3◦ of visual angles. In order to avoid
image degradation due to the aberration near the boundaries of the
display, we fix the position of the stimuli at the center of the display
and change the position of target cross to control stimulus eccentricity.

The results of this experiment are shown in Fig. 5 (b–d). We observe
an increase in depth difference thresholds with respect to eccentricity
as expected. This implies that the human visual system (HVS) is less
sensitive to the incorrect edges generated by LB in the peripheral visual
field and it provides us the flexibility of using LB instead of LFS at
edges located in the periphery to improve the performance. Another
observation is that the difference between LB and LFS decompositions
is highly distinguishable at low luminance contrast edges, which is a
finding that is in the opposite direction of the analysis on texture, where
the difference between LB and LFS is reduced with the luminance
contrast reduction as shown in Fig. 4 (a,b). Notice that at the occlusion
boundaries, the mixed signals from the focused and defocused image
regions are perceived, which is not the case for local texture perception.
In the following section, we further analyze this interesting trend.
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Fig. 5: Artifact perception at depth discontinuity. (a) The configuration
of the perceptual experiment. The values in parentheses represents the
eccentricity, depth difference, foreground luminance and background
luminance. (b–d) The experimental results on the depth difference
threshold at which LB and LFS are distinguishable. The mean values
are shown with the standard deviations in parentheses.

6.2 Analysis of edge profiles
In order to clarify the occlusion perception, we investigate 1D lumi-
nance profiles (Fig. 6) that are produced at the fovea by LB and LFS



methods, while observing a depth edge between the front and back
planes. We assume that the eye is always focused at the front plane,
which leads to the strongest artifacts [37].

The E-1—E-3 types in Fig. 6 show the depth discontinuity where
the luminance values are the same for the front and back planes. In
such conditions the artifact patterns in the LB decomposition can be
attributed to an interaction of two factors: optical blur in the back plane
and luminance additivity in our two-plane display (Sect. 2.2). As the
energy of the blurred signal increases with the back-plane luminance,
the artifact absolute magnitude is larger in the E-3 than the E-1 case.
However, the artifact detectability, akin to Weber’s law, depends on
its luminance contrast with respect to the uniform background; thus,
the E-1—E-3 types have similar thresholds (Fig. 5 (b)). In general, the
eye sensitivity for this type of artifact is relatively high, as the contrast
detection thresholds at uniform background are relatively low [26]. The
artifact contrast increases with depth discontinuity, so that it can easily
be detected even for small depth differences (Fig. 5 (b)).
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Fig. 6: 1D luminance profiles at the edge between the front and back
planes separated with the 0.6 D depth difference for LB and LFS
decompositions. The right half of each plot corresponds to the back
plane, and the left half to the front plane, which is also the focus plane.
At the bottom of each case, the SSIM value pairs of (LFS vs. ground
truth / LB vs. ground truth) are shown in the parentheses. These SSIM
values clearly indicate that LFS surpasses LB in all cases.

The F-1—F-3 types in Fig. 6 show the depth discontinuity where
the front-plane luminance values are higher than their back counterpart.
Similar artifact patterns as in the E-1—E-3 types are created, but this
time they are imposed on contrast edges that act as contrast maskers
[26]. Effectively contrast discrimination thresholds for such artifacts
are elevated, which requires significant increase of depth discontinuity
to make the artifact visible (Fig. 5 (b)).

The B-1—B-3 types in Fig. 6 show the depth discontinuity where
the back-plane luminance values are higher than their front counterpart.
This time the artifact pattern is embedded into the edge luminance
profile, which might result in a more blurry edge appearance. Never-
theless, the HVS sensitivity for such artifact patterns is similar to the
F-1—F-3 types (Fig. 5 (b)) with remarkably close depth thresholds
for the same luminance contrast (the F-1 and B-1, and F-3 and B-3
types). This observation does not hold for the F-2 and B-2 types, and
it can possibly be attributed to the imperfect luminance profiles for
LFS due to intensity saturation caused in the constrained optimization.

Interestingly, the variance in the participant responses is higher for the
B-1—B-3 types than their F-1—F-3 counterparts.

While we do not conduct a detailed analysis for the eccentricity
cases (Fig. 5 (c-d)), overall, similar observations can be made.
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Fig. 7: SSIM calibration. (a) The RMS error between the predicted
depth thresholds and experimental results. (b–d) the predicted depth
difference thresholds from SSIM for various eccentricities. The values
represent the error between the predicted thresholds and experimental
outcome.

6.3 Calibrating SSIM
Similar to our previous analysis in Sect. 5.2, we calibrate the SSIM to
predict the outcome of perceptual experiments (Sect. 6.1). Instead of
using the previous detection threshold, we derive the optimal SSIM for
detecting artifacts at occlusions independently. This strategy follows
the observations made in [1,41], where specific training for each artifact
type led to the improvement of SSIM metric predictions.

For each combination of the luminance contrast and depth difference,
we generate the front focal images for both LFS and LB, and compute
the minimum value in the SSIM map between the two algorithms. In
order to simulate the perceived image in the peripheral vision, we
apply the Gaussian blur with the cutoff frequency according to the
quantitative HVS model by Watson [43]. The RMS error between
the predicted and actual depth differences is the smallest, around 0.7–
0.83 (Fig. 7(a)), and we conservatively select the largest value as the
detection threshold. The depth difference thresholds as predicted by the
SSIM are shown in Fig. 7 (b–d) for various eccentricities. The errors
are typically acceptable when compared to the variance in the user
experiment in Fig. 5 (b–d). However, the SSIM prediction produces
depth thresholds that are consistently too large for the F-type distortions
and too small for the B type (Fig. 6). This discrepancy in the SSIM
sensitivity might be attributed to differences in the distortion profiles
as discussed in Sect. 6.2. In further considerations, we rely on a more
conservative prediction for the B type.

Using the calibrated SSIM, we can predict depth thresholds for
larger eccentricities in display configurations of wider field of view and
extended dioptric range. Based on these predictions, combined with
the experiment outcome in the fovea and near eccentricity (Sect. 6.1),
we investigate the selection rule for finding regions to apply LFS in the
next section.

7 UNIFIED OPTIMIZATION

Our analyses reveal that LB can be applied for all textured surfaces
(Sect. 5). For occlusion boundaries, we need to selectively apply LFS
depending on the luminance contrast, depth difference and eccentricity
(Sect. 6). In this section, we establish the selection rule for LFS based
on the occlusion analysis and propose a unified optimization to integrate
LB and LFS.

7.1 Selection rule
We design the selection rule for LFS as a function of the Michelson
contrast, eccentricity and depth. We first express each combination of
background and foreground luminance as Michelson contrast. In this
case the F-1 and B-1, F-2 and B-2, F-3 and B-3, and E-1–E-3 types
have the same contrast. Among two or three different depth thresholds
for a given contrast, we select the smallest depth thresholds to be on
the conservative side. In our SSIM prediction, we also aim to study
the perception of artifacts at large eccentricities, which is expected to
lead to larger depth thresholds. In order to check the depth separation



beyond 0.6 D, we simulate four-plane displays with a 0.6 D gap be-
tween successive layers. Our experimental outcome still holds for this
display configuration since LB assigns the values to two nearby planes
only; therefore, the behavior of LB in our display and the four-plane
display is the same for edges with less than 0.6 D separation. In Fig. 8,
we extrapolate the depth threshold to 50◦ eccentricity. Then, we fit
a 3D surface to the predicted depth thresholds. The depth thresholds
obtained from the perceptual experiments are marked with red points,
and the predicted thresholds from SSIM are indicated with blue points.
Although further confirmation is required with the perceptual experi-
ments, our prediction suggests that a huge computational gain could
possibly be obtained in wide field of view multi-layered displays in the
future. In our implementation, we apply LFS to the cases where the
depth difference is larger than the depth thresholds on the predicted
surface.

Based on the selection rule, we generate a mask indicating regions
that require LFS. The example of a mask generation for a fish scene
in Fig. 12 is shown in Fig. 9. From the depth map (Fig. 9(a)) and
Michelson contrast map (Fig. 9(b)), we generate a mask to apply LFS
for the center gaze direction (Fig. 9(c)). The A and B cases show the
occlusion boundaries eliminated from the mask due to the decreased
sensitive at high eccentricities. The C case is an example of type E
edges in Fig. 6. Although this edge has a small depth difference, it is
still masked due to its lower luminance contrast compared to nearby
edges.
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Fig. 8: The predicted depth difference thresholds from the SSIM. The
goodness of fit: R2 = 0.9603, RMSE= 0.068. For the measurement
data only, R2 = 0.8078, RMSE= 0.071.

7.2 Unified decomposition framework

We propose a unified optimization scheme which solves LFS with LB
as a constraint. In practice, we can calculate LFS and LB separately
and blend the results at intersection regions. However, keeping in mind
that LFS requires a constrained least square optimization, using LB
as the boundary condition for LFS can provide a smooth transition at
intersections. The original decomposition algorithm of LFS can be
written in the following form:
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Fig. 9: Mask generation. (a) Depth map. (b) Michelson contrast map.
(c) Mask. White region: masked region for the center gaze direction.
Green region: masked region assuming no degradation of HVS at high
eccentricities.
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Here we employ a two-plane parametrization of the light field. v
denotes the spatial coordinate on the light field plane and u denote the
spatial position on the pupil. L(v,uk) is a vectorized 2D image given a
viewpoint k and xd is a vectorized 2D pixel value on the display layer d.
K is the number of viewpoints and D is the number of layers. Without
loss of generality, we assume that the number of pixels in each layer
and target light field are both equal to N. In practice, the target light
fields can have a different resolution. The submatrix Pkd of projection
matrix P is defined as follows [25]: (Pkd)i, j = 1 if L(i,uk) intersects
with (xd) j, and 0 otherwise.

We divide each component into two regions: the masked and un-
masked regions. We apply full decomposition to the masked region,
and the linear blending rule to the unmasked region. The subscript M
denotes “masked” and U denotes “unmasked”.

L(v,uk) =

[
L(v,uk)M
L(v,uk)U

]
,Pkd =

[
Pkd,M
Pkd,U

]
,xd =

[
xd,M
xd,U

]
(2)

Then the original equation can be rewritten as follows:
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Since the linear blending rule is applied for a single image, we
eliminate L(v,uk)U ,Pkd,U and xd,U for k > 1, assuming that u1 is the
center viewpoint. Then, the unmasked region is handled only with the
center viewpoint, L(v,u1)U .
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By applying the linear blending, we can reduce the dimension of
the projection matrix from (KN)× (DN) to (N +(K −1)NM)× (DN),
where NM denotes the number pixels in the masked region. For example,
if K = 9,D = 3,NM = N/4, then the dimension changes from (9N)×
(3N) to (3N)× (3N).

Solving the reduced decomposition problem, however, does not
provide the correct answer because xd,U do not have enough constraints.
The multi-viewpoint images impose constrains on each pixel value, but
the single viewpoint cannot. Therefore, the pixel values should be
calculated separately according to the linear blending rule and replaced
in each iteration step.

8 IMPLEMENTATION

8.1 Rendering and decomposition
Our rendering pipeline breaks down to four steps: (1) rendering the
central viewpoint image and depth map, (2) computing the mask for
LFS, (3) rendering additional viewpoint images on the masked region,
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Fig. 11: The rendering and decomposition timings for various ratios of
masked region for the fish scene in Fig. 12.

and (4) performing LB and the iterative decomposition using SART.
In the case of full light field synthesis without any mask, we render
9 views with a 1200× 1200 resolution with a 1 ray/pixel. For our
optimal decomposition, we first render a single 2D image and depth
map. By analyzing the luminance contrast and depth gradient map, we
calculate the masked region based on the criteria in Sect. 7.1. Next, the
8 viewpoint images except the center images falling inside the pupil
are generated only for the masked region. Compared to the genera-
tion of full light fields, our selective rendering can greatly reduce the
computation time. From the rendered target scene, we calculate the
optimal decomposed images using the unified decomposition frame-
work (Sect. 7.2). At this stage, we also reduce the optimization time
over the conventional SART implementation by developing an efficient
adaption of SART in CUDA. More details can be found in Supple-
mentary Information C. The rendering system is implemented using
Nvidia OptiX ray tracer, which enables the selective rendering for a
given mask with minimal overhead. The renderer is driven by a PC
with a 3.60 GHz Xeon CPU and 32.0 GB RAM equipped with a single
Nvidia GTX 1080 TI graphics card.

8.2 Eye-tracked multi-layered accommodative display
We build a two-plane VR display to test the rendering strategy. The
schematic and photograph of the setup are shown in Fig. 10. For
each eye, images from two 2560 × 1440 LCD displays (Topfoison
TF60010A) are combined with a beam splitter (Edmund Optics #64-
408) and magnified with an achromatic lens (Thorlabs AC508-080-A).
Eye-trackers (Pupil Labs) are placed right behind the two lenses. The
optical system for the right eye is mounted on the linear stage for
adjusting the interpupillar distance. The dioptric distances to the front
and back virtual planes are set to 2.0 D and 1.4 D, respectively.

The resolution of display is 1200 × 1200, which is significantly
higher than the light field displays reported so far [16, 24, 35]. FOV is
40◦, and the angular resolution of the system is 15 cpd. Our system has
a high enough resolution and large enough FoV to study the effect of
foveation, while the resolution of current VR and AR systems rarely
exceeds 10 cpd, which is quite limited for foveated rendering.

9 RESULTS

We render three different scenes to test our rendering strategy. We first
evaluate the computational time for our optimization algorithms. Then,
we compare the visual quality of our method with LB and LFS on our

Scene # polygons mask(%) rendering decomposition
Fish 20498 7.3 9.26 (27.48) 2.57 (4.11)
Dice 569810 6.5 14.11 (47.08) 2.44 (4.12)

Forest 16924 1.8 7.29 (28.31) 2.35 (4.19)

Table 1: The rendering and decomposition timings of our hybrid method
for various scenes. The rendering and decomposition timings are given
in ms. The values in the parentheses indicate timings for full LFS
rendering.

display prototype and using simulations.

9.1 Performance
We measure the total rendering time for the whole pipeline during
monocular viewing. For three scenes in Fig. 12, the rendering and de-
composition timings for our hybrid method and full LFS are measured
in Table 1. All decompositions are performed with 10 iterations. As
the shader/geometry complexity becomes higher, the rendering time
increases. However, the computational saving of our hybrid method is
even more pronounced with respect to full LFS, since in many scene
regions we require only a single view for LB and can avoid full LF
rendering. We also observe that the decomposition time only depends
on the percentage of masked region. Our test scenes contain 5.19%
of LFS region on average. The frame rates are measured as 84 Hz
(×4.25), 60 Hz (×4.06), 103 Hz (×4.50) for the fish, dice and forest
scenes. The values in the parentheses denote the speed enhancement
over full LFS after subtracting a fixed cost of a single view rendering. If
a scene contains many depth edges, the performance gain of our hybrid
method reduces since most of the regions should be rendered with LFS.
For binocular viewing conditions, the stereoscopic scenes are rendered
sequentially. In this case, the total rendering time increases by a factor
of 2.

In order to test the effect of percentage of masked region, we also
measured timing for various masked region for the fish scene as shown
in Fig. 11. Here, we generated the masks randomly, instead of using the
mask generated by the selection rule in Sect. 7.1. The zero percentage
corresponds to the LB-only rendering. The total optimization time
linearly increases as the masked region grows. This trend implies
that there is minimal overhead coming from selective rendering for
randomly masked region.

9.2 Comparison
For each scene, we capture the photographs from our display prototype
and simulate the perceived images as shown in Fig. 12. We compare
three algorithms: LB, full LFS and our optimization. The masks are
computed assuming the gaze is directed towards the center. For the
simulated images, we compute the SSIM against ground truth, which
is the focal image generated with dense light fields. The SSIM maps
indicate that LB produces strong artifacts mostly along the occlusion
boundaries. Furthermore, the boundaries between LFS and LB in our
algorithm do not produce any noticeable discontinuities, confirming
the validity of the unified decomposition framework. However, halo
effects are visible around edges in captured images for both LFS and
our method. We found that small errors in color calibration between
two display layers led to such artifacts, which are not visible in the
simulation.

The fish and dice scenes show various aspects of edge reconstruction
analyzed in Fig. 6. The blue fish and gray dice are examples of the
E-3- and E-2-type occlusions. LB generates a sharp contrast while LFS
produces smooth transitions. On the other hand, as seen around the
yellow fish and reddish-brown dice, the B-2-type edges from LB look
blurry, but sharp edges are obtained in our method. The edges along
the white part of the fish or the orange dice present F-2-type profiles.
Since the foreground objects are brighter, the differences among the
three algorithms are less obvious.

The forest scene demonstrates the reconstruction quality in textured
regions. The high-frequency features of slanted grass fields are pre-
served in LB and our method, but they are blurred out in LFS, which is
expected from Fig. 4(e). Although our method provides better image
quality, this enhanced contrast could possibly lead to incorrect contrast
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curves as seen in Fig. 2. However, far-focus images still look more
blurry than the focused images on grass field, which suggests that the
failure of LB at high spatial frequencies does not affect the effectiveness
for driving accommodation [29]. On the other hand, low frequency
textures on the yellow and green trees are reconstructed with slightly
higher contrast for LFS, which is expected from the low frequency
region in Fig. 4(d). However, for those regions the differences between
the two methods are subtle, so they are not distinguishable according
to our perceptual experiment and SSIM predictions.

9.3 Temporal coherence

We test the temporal coherence of our method on dynamic scenes,
which is a critical use case for real-time methods. As our perceptual
findings allowed us to consistently use LB for textured regions, tempo-
ral changes occur only around edges. Since the threshold functions on
edges are derived based on indistinguishability between LB and LFS
(Sect. 7.1), smooth transitions can be achieved when a switch between
LFS and LB occurs near the threshold. We first test the transition be-
haviors in two dynamic scenarios. The results during object and camera
motion are given as Scenes 1 and 2 in Supplementary Video, respec-
tively. In both cases, we assume a gaze direction towards the center,
which is marked with a red box. The captured and simulated videos
do not show any noticeable artifacts around the edges near the gaze
position. In the periphery, the transition between the two algorithms
are sometimes visible, but those boundaries are not noticeable in actual
viewing conditions due to the reduced sensitivity of HVS. In Scene 1,
we observe rendering artifacts around the high spatial frequency tex-

tures which originate from the low sampling rate used (1 ray per pixel)
and are unrelated to our mask quality. In order to address this issue,
space-time ray-tracing methods can be employed in the future for a bet-
ter rendering quality [9]. For a better visualization of various artifacts,
we also computed the SSIM map between the images generated with
our method and the ground truth. Here, the ground truth is computed
as focal images generated with dense light fields. The SSIM maps
indicate that high spatial frequency textures show noticeable deviations
due to the use of single ray per pixel and imperfect reconstruction of
high spatial frequencies as discussed in Fig. 2. The SSIM videos also
show an error at occlusion boundaries in the periphery, but it is not
noticeable due to the foveation. Although those artifacts are clearly
seen in the SSIM maps, the rendered videos do not exhibit significant
artifacts when they are observed alone without the comparison against
the ground truth.

We additionally test mask stability during the use of an actual eye
tracker (Scene 3) in Supplementary Video in order to see how our
method behaves in the presence of measurement noise in gaze position.
Due to physical constraints, it is not possible to capture a scene while
an observer is using the display. Therefore, we captured the results
using gaze positions recorded from an actual viewing session of an
observer. In order to improve the stability of our method, we applied
a simplified version of a denoising method proposed by Kumar [20]
for gaze inputs. No visible artifacts were detected during our visual
inspection, which indicates that our hybrid method is able to perform
well when an eye tracker is used.



10 EVALUATION

In order to validate the perceptual quality of our method, we conducted
a user experiment to compare (LB, Ours) and (gaze-contingent LFS,
Ours) for four static scenes in a binocular setting. In order to simulate
the gaze-contingent sampling in Sect. 4, we show gaze direction stimuli
and project decomposed images optimized for a given gaze direction.
To allow the accommodation change, the gaze direction stimuli were
set to rectangular boxes extending 2◦ of visual angles for both eyes.
This small gaze change does not introduce the generation of new de-
composed images in gaze-contingent LFS. The subjects are instructed
to maintain the gaze direction inside the box, but to judge the overall
image quality. In each trial, the users are asked to choose the scene
which produces better image quality. In each scene, the users compare
the quality of scenes at five different gaze directions. Six subjects
participated in the experiment. The outcome of perceptual evaluation
is shown in Fig. 13. We observe high preference for our method over
the LB and the difference between the two methods is found statisti-
cally significant in binomial test (p < 0.05 for all scenes). This can be
attributed to the better reconstruction of edges in our method. In the
forest scene, the difference between LB and our algorithm decreases
since the scene mostly consists of textured regions without occlusion.
In the comparison with LFS, our algorithm shows similar preferences
for fish and dice scenes (p > 0.50), which indicate the observers are
indifferent between the two methods. Considering the fact that those
two scenes contain many occlusion boundaries, the outcome of user
study suggest that our masking algorithm in Sect. 7.1 successfully
works. However, the subjects preferred LFS over our method in the
forest scene which contains high frequency features and the difference
is significant (p < 0.05). Although we did not survey formally, subjects
reported that they prefer blurred texture in LFS over ours (Fig. 12).
Since the reconstruction of high frequency textures requires precise
alignment, small pupil and head movements may lead to perception of
those features as noise patterns.
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Fig. 13: The percentage of answers preferring our method over LB and
LFS for three scenes. The error bars indicate the standard error.

11 LIMITATIONS

Display Our optical system is based on magnifier lenses; therefore,
the system suffers from aberrations around the outer regions. The
multi-plane displays with holographic optical elements [24] could be
a good candidate for reducing the image degradation. Although our
design provides a relatively wide FOV of 40◦, it is still smaller than
current VR displays. The dioptric range of the display is also limited in
two-plane displays. Therefore, further validating our occlusion analysis
in wide FoV multi-plane displays with larger dioptric range is required.
The development of the displays with extended dioptric range also
enables the study of foveation rules on the occlusion boundaries in the
context of defocus states, while only eccentricity has been considered
in our study. Similar to blurred artifacts at high eccentricities, large
depth differences between the eye focus and edge can also reduce
sensitivity to edge artifacts. Our prototype currently lacks devices
measuring the accommodation states [18, 35]. The evaluation of the
effectiveness of driving accommodation with different optimizations
would be important future work.

Perception In this work, we relied on a specific image quality
metric (SSIM). As the image quality evaluation is still an open problem,
our detailed masking aggregation could be affected by SSIM inaccura-
cies. As observed in the validation experiment, the prediction of SSIM

does not account for artifacts induced by viewing conditions such as
pupil movements and misalignment. Since the perceived images de-
pend greatly on the focal state, a quality metric that can meaningfully
compare lightfields would be required. Such a metric should be ap-
plied after considering display specific limitations in reproducing light
fields. Also, a metric capable of predicting the ability to induce the eye
accommodation by such reproduced light fields would be desirable in
deriving possibly new foveation rules in our approach. We relegate all
these interesting and difficult problems to future work.

Rendering In this work, we focus on Lambertian scenes, and
handling glossy objects would require the extension of our masking
algorithm to consider such objects as a function of the visibility of view-
dependent effects. Since the boundaries between LFS and LB show
smooth transitions as seen in Fig. 12, extending the mask region should
handle non-Lambertian scenes as well. We also did not perform a
direct a comparison to RO method. Although RO performs moderately
better at 9 and 12 cpd according to our analysis in Fig. 2, this quality
improvement comes at the significant computational speed loss. It is
noteworthy that the rendering speed of RO is reported as 5 FPS for a
display resolution of 512×512 [35], while the performance time of our
algorithm is faster than 60 FPS for a display resolution of 1200×1200.
Furthermore, none of the methods can correctly trigger accommodation
at 12 cpd, therefore we concluded that the gaze-contingent LFS is a
suitable method providing similar quality offered by RO yet with much
faster computational speed. Although we expect performance gain
without significant quality degradation, we leave this comparison for fu-
ture work. We also believe that our strategy can be successfully used to
combine RO and LB techniques, but this requires further investigation.

12 CONCLUSIONS

In this paper, we developed a hybrid decomposition framework of
the linear blending and the light field synthesis enabling the real-time
rendering and high-fidelity reconstruction in multi-layered light field
displays. Our perceptual experiments and the SSIM analysis provide a
deeper insight into visual quality produced by different decomposition
algorithms. In particular, we show that for textured surfaces, LB and
LFS are indistinguishable for low to mid spatial frequencies, and LB is
closer to the ground truth for high spatial frequencies. For occlusion
boundaries, LB fails at low luminance contrast edges rather than high
contrast edges, which seems counterintuitive but is a consequence of
additive combining of focused and defocused patterns at both edge sides.
We also show that those conditions for occlusions can be further relaxed
for surfaces at sufficiently large eccentricities, when the sensitivity of
the HVS drops significantly. In order to apply our selective optimization
strategy, we develop a unified optimization framework of LB and LFS.
We tested our optimal rendering strategy with a two-layer multi-plane
display and validate the 60 Hz rendering time for 1200×1200 resolution
with 9 viewpoints.

While our algorithm focuses on the additive light-field display, our
hybrid strategy can possibly be extended to the multiplicative light-
field displays since it can be formulated with the additive light-field
synthesis under logarithm [23]. Therefore, investigating the simple
decomposition rules in a multiplicative architecture and integrating
with the light field synthesis algorithms would be an interesting topic.
Since the major artifacts of LB around the occlusion originate from
the additive nature of our displays, studying the edge artifact in the
multiplicative display would lead to interesting perceptual insights in
accommodative light-field displays.

The perceptual evaluation of optimization algorithms for dynamic
scenes could be another interesting topic of future work. Even though
the incorrect boundaries of the linear blending are clearly visible in
static scenes, it is unclear whether artifacts are noticeable under motion
blur. Therefore, studying the perception of artifacts in interactive and
dynamic scenes could provide additional computational benefits.
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