|

Sampling AAnaIysis using Correlations
“ofor Monte Carlo Rendering

A. Cengiz Otztireli and Gurprit Singh

A. CeNnGIZ OZTIRELI & GURPRIT SINGH

November 2018

X
— f
Contents

Abstract

About the Lecturers

Course Syllabus

Infroduction
1.1 Point Patterns in Computer Graphics
1.2 Stochastic Point Processes
1.3 Signal Processing
1.4 This Course

Background
2.1 Probability
2. 1.1 Random Variables
2.1.2 Expected Value, Mean, Variance,and Covarianceo oo v oo
2.2 General Point Processes
2.2.1 Gaussian PoiNt ProCesseso oo
222 Point Process Statistics o e
223 Campbell’'sTheorem
23 Fourier Transform
2.3.1 AufocorrelationTheorem
2.3.2 Projection-Slice Theorem
2.4 Numerical Integration
24.1 QUAAratUre RUIES o
242 Monte Carlo Integrafion

13
14
15
15

243

25
2.5.1

3.1

3.1.1
3.1.2

3.2

3.2.1
322

3.3

4.1

4.2

4.2.1
4.2.2
4.2.3

4.3

5.1
5.2

Quasi-Monte Carlo Integration

Discrepancy Theory

Koksma-Hlawka Inequality o o

Sampling Analysis
Spatial Measures

Estimator forIntensity
Estimators forthe PCF

Spectral Measures

Power spectrum
Radial Domain Analysis i

Discrepancy

Error Analysis in Monte Carlo Integration
General Point Patterns
Stationary Point Patterns

Isofropic PointPatterns
Anisotropy in Point Patterns,
Quasi-Monte Carlo Sampling

Point Patterns with Non-constant Intensity

Conclusions

Recent Developments and Future Directions
Resources for Stochastic Point Processes

Bibliography
Books
Articles

23
23

25

26
26

30

31
32

34

37

38
39
39
41

41

43
43

45
45

Listings

3.1
3.2
3.3
3.4
3.5
3.6

Differential Histogram 27
Pair Correlation Function 29
Fourier power spectrum Lo L 32
Radially averaged power spectrum 32
Radial variance (anisotropy) 33
Star discrepancy 34

Abstract

Point patterns and stochastic structures lie at the heart of Monte Carlo based numerical
integration schemes. Physically based rendering algorithms have largely benefited from
these Monte Carlo based schemes that inherently solve very high dimensional light transport
integrals. However, due to the underlying stochastic nature of the samples, the resultant
images are corrupted with noise (unstructured aliasing or variance). This also results in bad
convergence rates that prohibit using these techniques in more interactive environments
(e.g. games, virtual reality). With the advent of smart rendering techniques and powerful
computing units (CPUs/GPUs), it is now possible to perform physically based rendering at
interactive rates. However, much is left to understand regarding the underlying sampling
structures and patterns which are the primary cause of error in rendering.

This course surveys the most recent state-of-the-art frameworks that are developed
to better understand the impact of samples’ structure on the error and its convergence
during Monte Carlo integration. It provides best practices and a set of tools for easy
integration of such frameworks for sampling decisions in rendering. We revisit stochastic
point processes that offers a unified theory explaining stochastic structures and sampling
patterns in a common principled framework. We show how this theory generalizes spectral
tools developed over the years to analyze error and convergence rates, and allows for
analysis of more complex point patterns with adaptive density and correlations. At the end
of the course, the audience will have a comprehensive understanding of both theoretical
and practical aspects of point processes that would guide them in choosing and designing
sampling strategies for applications specific to Monte Carlo rendering. A codebase and
web application for easy use of the introduced techniques will also be made available on
https://github.com/sinbag/SamplingAnalysisWithCorrelations.

Intended Audience and Prerequisites

This course is structured for researchers, practitioners, and graduate students in the field of
Monte Carlo rendering, who would like to get a theoretical and practical understanding
of how to utilize methods from stochastic point processes to enhance offline, interactive
and /or real-time rendering systems.

We assume a basic understanding of statistics, signal processing, and calculus that can
be obtained via undergraduate introduction level courses. In particular, we assume no
background on stochastic point processes, Fourier theory or Monte Carlo integration, which
in general would be a core application for demonstration.

https://github.com/sinbag/SamplingAnalysisWithCorrelations

About the Lecturers

Dr. A. Cengiz Oztireli

is currently a Research Scientist at Disney Research Ziirich. His research interests are in
computer graphics, vision, and machine learning. With his collaborators from academia
and industry, he has been publishing works in international journals and conferences. He
obtained his M.S. and Ph.D. degrees in computer science from ETH Zurich (jointly funded
by the Swiss National Science Foundation), and completed a double major in computer
engineering and electronics engineering at Koc University (valedictorian). He has been
honored with several awards including the Furographics Best Ph.D. Thesis Award and
Fulbright Science and Technology Award.

Dr. Gurprit Singh

is currently a post doctoral research associate at Max Planck Institute for Informatics,
Saarbriicken. His research is focused on analyzing the impact of different sampling patterns
on Monte Carlo based rendering algorithms. His recent works include developing advanced
Fourier domain tools for convergence analysis that also results in new design principles for
novel futuristic samplers. He obtained his Ph.D. in 2015 from the Université de Lyon 1,
France, under the supervision of Prof. Victor Ostromoukhov which was followed by a two
year post-doc at Dartmouth College with Prof. Wojciech Jarosz.

Course Syllabus

The course is of duration 1 hour and 45 minutes, and will follow the following schedule,
after the structure of this script.

Part Topics Duration

Background Probability
General Point Processes

Fourier Transform 15 min.
Discrepancy Theory
Numerical Integration

Sampling Analysis Spatial Measures _
Spectral Measures 25 min.
Discrepancy

Conclusions Recent Developments and Future Directions
Resources for Stochastic Point Processes

1. Infroduction

1.1

Point Patterns in Computer Graphics

Sampling patterns with points distributed according to certain rules but otherwise randomly
arise in many applications in computer graphics including anti-aliasing, representing and
integrating functions for rendering, image, video, and geometry processing, physically-based
simulations, crowd simulations, texture representations and synthesis, non-photorealistic
rendering, stippling and halftoning, or modeling natural distributions.

We show examples of some of these applications in Figure 1.1. Although the outputs are
quite different for these cases, a common pattern can be observed: they all rely on random
structures that follow certain rules. This naturally leads to the idea of using statistical
measures for handling the problems encountered. However, classical statistics are of limited
utility for these cases. A classical example of limitations of simple statistics is depicted in
Figure 1.2, left. Here, the one on the left is a completely random distribution, and the other
is a so-called blue noise distribution. There is a clear visual difference in how points are
distributed for these two cases. However, if we simply use the common statistical measure
of expected local density, e.g. count the number of points falling into an arbitrary fixed
circle, and take the average of those numbers over many different random or blue noise
distributions, we will get a constant number for both cases. Thus, we cannot explain how a
random distribution as on the left is different from the one on the right by considering such
simple measures.

As a result, traditionally, practitioners of computer graphics utilize a different set
of sophisticated measures and techniques to handle problems in different applications.
However, it has also been observed that many problems can be interpreted as analyzing
and synthesizing stochastic structures represented with point samples. This observation
naturally leads to utilizing ideas and techniques from the field of stochastic point processes,
which provides a comprehensive theory and practical set of techniques to handle general
point patterns.

1.2

14 Chapter 1. Introduction

Figure 1.1: Point patterns arise in several applications in computer graphics. Some examples
are (from left to right, top to bottom): rendering, sampling for anti-aliasing, object tiling,
dynamic distributions, physical simulations, fabrication (the images are from, respectively, |9,
15, 16, 20, 21, 25]).

Stochastic Point Processes

Point processes are mathematical models for underlying processes that generate random
point distributions with certain characteristics. Some examples of generating processes are
natural processes such as the environmental factors that result in certain distributions of
trees, or algorithms that generate random sampling patterns for rendering. Although each
of the point distributions generated by a point process is different, they all share common
characteristics implied by the point process.

The theory of stochastic point processes offers a unified and principled treatment of
such point patterns. The main goal of this field is developing specialized statistical tools
for analyzing and synthesizing point distributions. Each point in a distribution is assumed
to have a random location and a mark associated with it. The correlations among point
locations and marks then give rise to a pattern. It is thus central to point processes to
analyze these correlations, to reveal the underlying patterns. A familiar example is a regular
grid of arbitrary orientation and location as in Figure 1.2, right: the locations of points are
highly correlated such that knowing only two points of the grid is enough to deduce the
locations of the rest of the points.

Techniques in stochastic point processes start from very general assumptions and
theorems from probability and measure theory. These are then specialized for common
and real-world cases, which are of great interest for the computer graphics community.
Physicists and statisticians have already been using such versions of the theory and associated
techniques to represent and understand many real-world structures for decades. We thus

1.3

14

1.3 Signal Processing 15

Figure 1.2: (Left) The two distributions have the same density of points, while they look
quite different. We need to consider correlations among point locations to characterize such
distributions. (Right) As the points in a regular grid are highly correlated, knowing the
locations of the two blue points is enough to exactly get the locations of all other points.

now have a wealth of ideas to be adopted, adapted, and improved upon to solve some of
the fundamental problems in graphics.

Signal Processing

Signal processing is a branch of science that looks at each function as a signal and helps
analyze, synthesize and modify these signals based on rigorous Fourier and Wavelet basis.
From early times in computer graphics, images and the underlying functions are studied as
signals using Fourier basis and has played a crucial role in both faithful reconstruction and
integration of signals. This course uses stochastic point processes to generalize the tools
from signal processing to give a general perspective on how to study error due to different
sampling patterns in Monte Carlo rendering.

This Course

This course presents a thorough introduction to stochastic point processes as used for point
pattern analysis in rendering, as well as algorithms to compute and utilize the associated
tools in practice. The framework introduced unifies and generalizes all previous measures
in spatial and spectral domains for error analysis in Monte Carlo rendering, and hence the
course differs from previous SIGGRAPH courses on rendering or spectral domain error
analysis.

2. Background

2.1

2.1.1

This section is dedicated to provide an applied view of stochastic point processes from
a rendering perspective. We will cover the theoretical underpinnings on an accessible
level, and without going into extensive technicalities. In particular, although the whole
theory extends to measure spaces, we will be dealing with points living in Euclidean spaces,
as many problems can be interpreted with Euclidean embeddings. For a more complete
theoretical exposition, we refer the reader to excellent books on point processes [11, 18]. We
will provide an extensive and annotated set of references for the point processes literature
in Section 5.2.

Probability

For reference, we start by reviewing some basic concepts from probability and statistics that
are required to understand the next chapters. For in-depth discussions on these concepts,
please refer to standard texts on probability and statistics. This chapter also introduces
some of basic notations we will use throughout this work. We assume a basic understanding
of calculus. We refrain from using technical definitions. If some technical concepts are not
familiar, they can be safely ignored to follow the discussion.

Random Variables

A random variable X is a variable whose value depends on the outcome of a random event.
A familiar example is assigning a number to the outcome of coin flipping. We can assume
that for a head the value of the random variable is 1, and for a tail it is 0. Hence, the value
of X depends on the random outcome of flipping the coin. We can define the probability
P(X = z) of X having a particular value x. In this example, for a fair coin, we can set
P(X =0)=P(X =1) =0.5.

For our purposes, we will be mostly dealing with continuous random variables. For such
a random variable X, we can define a probability density function (PDF) px(x). The PDF
px(x) is a non-negative Lebesgue-integrable function. The probability of X having a range
of values is given by P(z1 < X < z9) = Szf px (z)dz. In general, the random variable X can

2.1.2

2.2

18 Chapter 2. Background

have values in a multi-dimensional space. In this case, we write px (x), where lower-case bold
letters are used to express vectors. Similar to the one-dimensional case, we can define the
probability that X belongs to some Borel set B by P(X € B) = {;px(x)dx. If the range of
values that X can take lie in a domain D, it is then true that P(X € D) = {,px(x)dx = 1.

We can also regard a multi-dimensional random variable as multiple random variables.
Then, we can talk about joint probabilities that describe how these random variables depend
on each other. For example, for two random variables X; and Xy, P(X; € By, X3 € Bs) gives
the joint probability of finding X; and X5 in B; and By, respectively. For the continuous
case, we can similarly write the joint PDF as px, x,(z1,22). As in the notation above, we
can equivalently denote this as px(x), where X denotes the two random variables, and x
the samples in the corresponding two-dimensional space.

Expected Value, Mean, Variance, and Covariance

For a continuous random variable X with support D as above, the expected value of X is
defined by the integral Ex[X] = {, xpx(x)dx. A function f(X) of the random variable X
is also a random variable. Hence, we can similarly define the expected value of f(X) as
Ex[f(X)] = §p f(x)px(x)dx. This expected value can also be called the mean of f(X),
as it is the mean of the values f(X) can take, as X takes on its random values with
probabilities proportional to the PDF px.

To measure how much f(X) varies as we take random samples from X, variance is
defined as varx[f(X)] = Ex[(f(X) — Ex[f(X)])?] = Ex[f2(X)] — (Ex[f(X)])?. Hence,
variance actually computes the expected value of squared distances of f(X) from its
mean. We often drop the subscripts X and simply write E[f(X)] and var[f(X)] for
the mean and variance in the rest of this work. Finally, we can define how more than
one random variable vary together by defining the covariance matrix C, with elements
given by C;; = E[X;X;] — E[X;]E[X}], where X;’s are scalar random variables. This is a
multi-dimensional generalization of variance, where the diagonal entries capture individual
variances Cj; = vary,(X;), and the non-diagonals capture dependencies among the random
variables. Here, E[X;] is defined as before, and E[X;X;] = {, p zizjpx, x, (i, v;)dxvidz;.

General Point Processes

Intuitively, a point process is a generating process for a set of point distributions with
common characteristics. Hence, each distribution generated by a point processes can be
regarded as a realization of that point process. To characterize a point process, we can
compute statistics over different realizations. To capture how realizations vary, the study
of point processes starts by assigning a random variable X (B) to each Borel set B € D
for a given domain D. This implies that to characterize a point process, we actually need
wnfinitely many number of random variables, each of which is assigned to one of the infinitely
many sets in the given domain.

In order to make the analysis tractable, we can assume that we select a number of sets
Bi to B,,. We can then define the joint probability P(X(B;1) < by, -+, X(Bp) < by). A
point process can be formally described by characterizing this probability for all different n
and group of sets B;.

The most commonly used random variable is the number of points N (B) that fall into
the set B. This is indeed a random variable: for each realization of the point process,
i.e. a point distribution, this number changes randomly for a fixed B. Hence, for this B,
by generating different distributions from the same point process, we can compute the
PDF of N(B). We illustrate this idea in Figure 2.1 on three distributions generated by a

2.2.1

2.2.2

2.2 General Point Processes 19

B‘ e © B/ e “ ® B/® J o
1 ® ¢ (1) °
¢ ° ° °, e /o o
o * o o b ot > ¢
Y ® ° e © Py ..
°
° ® o o © ° e o ° °

Figure 2.1: For a given set B, the random variable N(B) counts the number of sample
points that fall into B for different realizations. For these three realizations of a point
process, it has values 3,5, 2, respectively. By generating more distributions from the same
point process, we can get an estimate of the PDF of N(B).

point process. Similarly, we can consider the joint probability and corresponding PDF of
N(By), -+ ,N(Bi1), which will be a fundamental tool in the next sections.

Gaussian Point Processes

An important case that we will encounter a lot in the coming sections is Gaussian point
processes. For these processes, the random variables N (B;) follow a Gaussian distribution.
Hence, for any group of given sets B;, the joint PDF of N(B;) is a Gaussian. Defining the
random variable X = [N(By), -+, N(B,)], we can write this as px (x)o(e_%(x_“)TC_l(x_“),
where the vector x stores the number of points in each set N(B;) for a given realization
(distribution), and the mean g and covariance matrix C are the only parameters of the
distribution that defines the PDF.

This leads to significant simplifications in the analysis, as the random variables can now
be fully described by only the mean and covariance, which correspond to first and second
order statistics on the random variables N(B;). We will see in the next sections that many
important results rest on this assumption. In practice, physicists have observed that most
point distributions are generated by Gaussian point processes. This is termed as the second
order dogma in the literature.

Point Process Statistics

The view of point processes with joint probabilities P(X (By) < by, -+, X(B,) < by)
naturally gives rise to a PDF based description. As all works in the rendering literature,
we will utilize this description for analyzing a point process.

Product Densities
Let us x; denote some arbitrary points in R%, and B; infinitesimal spheres centered at these
points with volumes dx; = |B;|. If we now define P(x1,--- ,Xy) as the joint probability of
having a point of a point process P in each of the infinitesimal spheres B;, then the k*
order product density o*) is defined by P(x1,--- ,x,) = 0 (xq,- -+ ,x,)dx1 - - - dx,. The
product densities are thus simply PDF functions for joint probabilities of random variables
of a certain kind that define the point process P.

We will see in the next sections that for our purpose of using point processes for
analyzing error in monte carlo integration, it is sufficient to consider product densities, and
in particular first and second order product densities o), 2. The first order product

20 Chapter 2. Background

Figure 2.2: (Left) A general point process generates point distributions with spatially
varying characteristics. (Middle) A stationary point process has translation invariant
characteristics. (Right) An isotropic point process further generates rotation invariant point
distributions so that we may translate or rotate the distributions without affecting their
properties.

density is simply given by o) (x)dx = P(x). We can show that the expected number of
points in a set B, where the expectation is computed over different realizations of the point
process P, can be written as the integral of this expression: Ep [N(B)] = {, o (x)dx.
Hence, Q(l)(X) measures the local expected density of points of the point process. It is thus
usually called the intensity of P, and denoted by A(x) = o) (x).

We can similarly define the second order product density o(? (x,y)dxdy = P(x,y). As
we will not need higher order product densities, we call this product density simply as
o(x,y). It thus gives us the joint probability of finding a pair of points at certain locations
in space. Intuitively, it can be estimated by generating infinitely many distributions from
the point process, and counting the number of pairs with points falling into the volumes
around x and y at the same time.

Stationary and Isotropic Point Processes

There are two very important special cases of point processes considered in the literature.
We will see that these cases are typically encountered in practice for rendering as well, and
can be easily extended if more complex distributions are needed. Stationary point processes
refer to processes which are translation invariant, i.e. the distributions generated by such
point processes will have the same statistics (e.g. product densities) regardless of where
we look at in space. We show an example distribution generated by a stationary point
process in Figure 2.2 (middle). For this case, the intensity becomes a constant A(x) = A,
and second order product density is a function of the difference between locations in space
o(x,y) = o(x —y). This is what makes most of the statistics encountered in the rendering
literature meaningful, as we will elaborate in Chapter 3. The second order product density
in this case is typically given by the normalized pair correlation function (PCF) g as
o(x —y) = Ng(x—y).

We can further assume that a point process is rotation invariant, meaning that the
characteristics of distributions generated by that point process do not depend on where
we are, and how we are oriented in space. In other words, you may freely rotate the
distributions and will always get the same characteristics (Figure 2.2 (right)). For this case,
A(x) = A, and o(x,y) = o(||x — y|) and thus g(x —y) = g(|x — y||). Hence, instead of
considering the high dimensional o(x,y) statistic, we can simply work with the 1D statistic
g(|x —y|) to describe the second order correlations of such processes.

2.23

2.3

23.1

2.3.2

2.3 Fourier Transform 21

Campbell’s Theorem

The importance of product densities comes from the fact that they can be used to compute
expectations over distributions generated by a point process. To analyze error, i.e. bias
and variance, in monte carlo rendering, we need to compute such expectations for functions
that are evaluated and summed at the sampling points x; (we will elaborate more in
Section 2.4 and Chapter 4), i.e. Ep[>] f(x;)], where the expectation is computed over
different realizations (point distributions) of a given point process. Here, x; are the points
in a given realization. As the number of total points in a given realization is random, it is
omitted for the sums. This can also be generalized to functions of more than one variable
as Ep [Z” f(xi,xj)].

Campbell’s theorem relates the expected values of such sums to integrals of arbitrary
positive functions f, and the product densities of the given point process:

Br (3] = [7Gx 1)

where f: RY - R* and

Ep [Z f(xi %)

1#]

= f f(x,y)o(x,y)dxdy, (2.2)
R4 x R4

where f:R? x R » R* and under the common assumption [11] that no two points in a
process can be at the same location almost surely.

Fourier Transform

Spatial statistics are best captured by first and second order correlations. The second
order correlations are directly computed from the pair-wise distances (differentials) between
each pair of samples. In differential terms, for sampling patterns, it is straightforward to
show that the cosine transform of the differentials give the corresponding expected power
spectrum. To study different isotropic and anisotropic samplers, we leverage a couple of
important theorems (listed below) that bridge the gap between spatial and spectral domains.
We will cover the necessary background for these theorems, which will be used later to
build sound mathematical formulations that would help derive closed-form formulations of
error (bias and variance) for Monte Carlo integration.

Autocorrelation Theorem

Spatial statistics are directly linked to the spectral domain. According to the autocorrelation
theorem, the Fourier transform of the autocorrelation of any function is equivalent to its
power spectrum. Oztireli [20] used this theorem to link variance during Monte Carlo
integration with the spectral domain variance formulation.

Projection-Slice Theorem

In two-dimensions, the Projection-Slice theorem states that if we take a 2D function Z(x),
project it onto a one-dimensional line L(u), and take the Fourier transform of this projection,
then this is equivalent to taking that same function Z(x), but do a two-dimensional Fourier
transform, and then slice it through the origin, in a direction parallel to the projection line
L(u). In Sec. 4.2.2, this theorem would be helpful in understanding the convergence rate
improvements in Monte Carlo rendering due to samplers with anisotropic power spectra.

24

24.1

24.2

24.3

22 Chapter 2. Background

Numerical Integration

Given a function f : R? — R* representing certain parts of light transport, rendering
requires us to estimate its integral in order to compute the color of each pixel. We thus
would like to study the error in estimating the integral I := ﬁ §p f(x)dx, where D is the
support of the function f with Vx ¢ D, f(x) = 0, and |D] is its volume. The estimator for
this integral is of the form

n
I:= Z wif(xz-), (23)
i=1
for some positive weights w; and sample points x;. The error in this estimator consists of a
bias biasp[l] = I — Ep[I], and a variance varp[l] = Ep[I%] — (Ep[I])? term, where the
expectations are over point distributions generated by the point process P as before.

Quadrature Rules

A number of solutions are developed for the numerical solution of integrals. Most prominent
are the Quadrature rules, where the weights w; and the sample positions x; from Equation 2.3
are determined in advance. The well-known Newton-Cots formula is used with Midpoint
rule (1-sample), Trapezoid rule (2-samples), Simpson rule (3-samples), where samples are
powers of 2 and approximates the integral as a sum of weighted, equidistant samples.
Similarly, Gauss quadratures were designed which extends freedom of choosing sample
locations. In both constructions, the convergence rate achieved is O(n~") given n samples
and a smooth integrand that has r-continuous derivatives. These approaches, however,
suffer from the curse of dimensionality, requiring n? samples for a d-dimensional integral
for the convergence rate C’)(n_r/ 4). Tt also requires special treatment to adapt these rules
to non-square domains which are typical in rendering.

Monte Carlo Integration

Estimating a higher dimensional integral with Monte Carlo (MC) based methods has huge
success. The MC based approach involves generating random samples over the domain (with
no two samples at the same location), is independent of dimensionality of the problem or
the underlying topology of the domain and would always give the variance convergence rate
of O(n~!) with completely random samples, irrespective of the smoothness properties of
the underlying integrand. We will investigate how to go beyond this convergence guarantee
with careful sampling.

Quasi-Monte Carlo Integration

Monte Carlo integration suffers, apart from the slow convergence rate, from the disadvantages
that only probabilistic statements on convergence and error limits are possible. The success
of any Monte Carlo procedure stands or falls with the quality of these random samples.
If the distribution of the sample points is not uniform, then there are large regions where
there are no samples at all, which can increases the error. Closely related to this is the fact
that a smooth function is evaluated at unnecessary many locations if samples are clumped.

Quasi-Monte Carlo (QMC) based integration follows deterministic generation of samples,
while making sure uniform distributions. The underlying algorithms are based on number-
theoretic approaches. As a result, sample sequences with good uniformity properties can
be generated in very high dimensions. The underlying sample generation routines are also
pretty fast and progressive with almost no pre-processing required. In these notes, we will
focus mainly on the stochastic samplers (MC based approaches), and the error caused by
these samplers during MC rendering.

2.5

2.5.1

2.5 Discrepancy Theory 23

Discrepancy Theory

Different sequences can be uniformly distributed. But looking at various uniformly dis-
tributed sequences, one will realize that there exist sequences with a very good distribution
behavior, whereas other sequences might just barely be uniformly distributed. Discrepancy
is a quality measure that measures the deviation of the sequence from an ideal distribution.

Shirley [26] introduced the notion of discrepancy to the computer graphics community
to compute the quality of sampling patterns. Even though Fourier analysis tools have been
used to study the behavior of various sampling distributions, this approach only provides a
qualitative analysis in the form of two-dimensional graphs. Computation of discrepancy
allows assigning a single quality number, the discrepancy, to the point set. This allows to
order point sets according to their discrepancy and compare which one is the best with
respect to this measure.

Koksma-Hlawka Inequality

The quality criteria derived from the discrepancy of sample positions is related to the
Koksma-Hlawka inequality. The Koksma-Hlawka inequality is a tight error bound on the
approximation of an integral by the sample average of integrand values:

1 !
‘E 2 I(zg) — fo I(:p)dx‘ < H(z)C(T) (2.4)
k=1

In this inequality H(zy) is the discrepancy of the points 0 < xp < 1 and C(Z) is the total
variation of the function Z:

o) = o2 { |1l o) o} (25)
C(I) = 0=yo<?/l1lg...<yn {Z I(yk) - I(ykl)} s (26)
k=1

where x[a, b] is a characteristic function which is non-zero only in the range [a, b]. Hick-
ernell [10] gives a detailed overview of this inequality and mentions that although the
Koksma-Hlawka inequality was originally derived for a particular integration domain D,
and a particular space of integrands, Z, the same may be applied to similar inequalities
that have been derived for other D and Z. In these inequalities, the integration error is
bounded by a product of two terms, the discrepancy of the sample points, and the variation
of the integrand.

In other words, the Koksma-Hlawka inequality splits the error into the part due to the
quality of the sample points, and the part due to the roughness of the integrand. When
7 is a reproducing kernel Hilbert space, the Koksma-Hlawka inequality is straightforward
to derive, and there is a simple formula for the discrepancy. This discrepancy also has
several other useful interpretations, including, (i) how the proportion of sample points in a
box deviates from the volume of the box, (ii) the average-case integration error, and (iii) a
goodness-of-fit statistic. Integration lattices and digital sequences are two popular families
of low discrepancy sample points. These sets typically give better convergence rates for
the discrepancy than a simple random sample. The Koksma-Hlawka inequality plays a key
role in the development of quasi-Monte Carlo methods. It has also influenced the study of
experimental design and led to the creation of uniform designs.

3. Sampling Analysis

3.1

We need computational tools and algorithms to realize the theoretical analysis tools as
proposed in the last section. We expect that the resulting statistics provide valuable insights
into the sampling patterns and thus allow us to understand, and intelligently choose and
adapt sampling patterns according to the particular rendering problem. Several measures
for this purpose have been proposed in the last decades. In this section, we will summarize
and elaborate on each of them in the common framework of point processes.

A very important concern here is the details of the resulting techniques, such as
normalization constants and stability factors, which are typically never explained in the
rendering literature. We thus put a particular emphasis on explaining such choices and
best practices, with theoretical justifications and practical code snippets.

Spatial Measures

Point process statistics are naturally defined in the spatial domain, e.g. in terms of distances
between points. Historically, such spatial measures of correlations have come quite late
into the rendering literature, but has turned out to be very powerful, as they contain all
information on a point pattern via the underlying point process. Indeed, all other measures
can be derived in terms of these statistics from point processes, as we will elaborate on in
the following sections.

The fundamental statistics we will be dealing with are first and second order product
densities A(x) and o(x,y) (Section 2.2.2), which capture first and second order correlations
of point locations in point distributions generated by an underlying point process. In
particular, we will assume stationarity, leading to a constant A, and g(x —y) = o(x —y)/\2.
Almost all statistics proposed in the rendering literature operate under this assumption,
allowing to work with the tractable g(r) function, where r = x — y, or its isotropic
counterpart g(r) with r = |x — y/|.

3.1.1

3.1.2

26 Chapter 3. Sampling Analysis

Estimator for Intensity

All estimators for A and ¢ can be derived starting from Campbell’s theorem (Section 2.2.3).
For the case of lambda, we can write the following expression

Ep [Z]Ip(xi)] —Ep [3 1] - L) Adx =)\JD dx = \|D), (3.1)

XiED

where Ip(x) is the indicator function which gives 1 if x € D, and 0 otherwise, D is part of
the domain R? where the point process in defined, and |D| is its volume. This simply tells
us to generate different distributions P from the point process, for each distribution count
the number of points N (D) that fall into a domain D, and average those numbers. It thus
leads to the following unbiased estimator

Zpk Ny (D)

S (3.2)

for K distributions generated by the point process.

Estimators for the PCF

Similarly, we can derive an estimator for the pair correlation function (PCF) g(r) as follows.

Ep [Z B — (xs — xj>>] = | 60— (= y)olx — y)axdy

1#]
2 [o (- y)glx — y)dxdy
Rd xR4

= Ng(r),

where § is the d dimensional Dirac delta. The estimator is thus given by

0= 2m Y Y oGk x), (3.4

Pr X;)X EPy,i#]

In practice, this means for each point distribution, we compute a histogram of difference
vectors x; —X; [30]. We provide the pseudocode for computing the statistic below for d = 2.
One important aspect here is that this estimator is computed using only one distribution
from the point process, as we typically observe a limited number of distributions. If we have
more than one distribution generated by the same point process, we can of course average
the statistic given by the below code for a better estimator as given in Equation 3.4.

Another important step for a practical estimator is using normalizations. The difference
vectors X; — X; are normalized by the estimator of A, i.e. the number of points n for
this given distribution, as (x; — x;)4/n. This ensures that intensity does not alter this
statistic, and hence distributions with different number of points but the same second order
correlations will generate the same statistic. Similarly, the final histogram is normalized to
cancel the affect of intensity on the histogram values.

Finally, we should consider the finite extent of the observation window for a distribution.
The original estimator in Equation 3.4 implicitly assumes an infinite window, i.e. the whole
Euclidean space in which the point process is defined. For a practical estimator, we get
points in a finite domain, typically a square. We are thus missing difference vectors that
have length larger than half of the length of the edges of this square. This means we can
only estimate g(r) for a limited range of |r|.

3.1 Spatial Measures 27

procedure differential_histogram(samples, histoWidth, histoHeight)
int N = samples.size();

//distLimit allows to select a fractional region of the domain
double distLimit = 0.125;

double fracLimit = 1.0 / (2.0*distLimit);
for p: 0 — N{
for q: 0 — N{
if (p == q)
continue:
double dx = samples[p].x - samples[ql].x;
double dy = samples[pl.y - samples[ql.y;

//Scale by the mean distance (in a regular 2D grid mean distance = VN)
dx *= VN
dy *= VN

//0nly take points which are within a mutual distance distLimit
if (fabs(dx) < distlLimit && fabs(dy) < distlimit){

int hcol = _xRes * fracLimit * (dx + distLimit);
int hrow = _yRes * fracLimit * (dy + distLimit);
histogram2d [hrow*_xRes+hcol] += 1;

}

//Normalize differential domain to make sure it converges to 1 as
dist->inf
double domainLength = 2*%distLimit;
double area = domainlLength*domainLength;
double numBins = histoWidth*histoHeight;
for(int k = 0; k < histoHeight; k++){
for(int j = 0; j < histoWidth; j++){
histogram2d [k*histoWidth+j] *= numBins;
histogram2d [k*xhistoWidth+j] /= (double) (N*xarea) ;

}

return histogram2d;

Listing 3.1: Differential Histogram

A smoothed version of this histogram can also be computed with a Gaussian kernel [30].
This smoothing can be realized with a convolution with a Gaussian kernel on the computed
histogram above, treating it as a 2-dimensional image.

Extensions for Finite Domains

The derivation for the case of a finite domain D proceeds similar to the derivation in
Equation 3.3

Br| N dr—bamx) | = | = (x—y)elx—y)xdy

X, X;€D,1#]
(3.5)
=\ f (r — (x — y))g(x — y)dxdy
DxD

— Nary (r)g(r).

28 Chapter 3. Sampling Analysis

Here, ay is the autocorrelation function of f, for any function f. The resulting estimator is
given by

o(r) = mzaﬂ gh X = (-x). (3.6)

Pk X4, X5 €Pr,1#]

Hence, the only change to the estimator in Equation 3.4 is that for each r, we need to
normalize the estimated g(r) with the autocorrelation ay, (r) of the indicator function Ip
for the domain D. This entails two changes to the code above: 1) we can now take all
possible difference vectors, without any limitation on its length, 2) we need to normalize
the histogram with the autocorrelation before the final normalization. This normalization
with the autocorrelation takes care of the fact that we are getting less difference vectors
at larger distances in a finite domain. The autocorrelation of the indicator function for a
square domain is given by ar, (r) = [T, (|D|V? — |(r);]) when |D|V4 > |(r);| for all I, and
0 otherwise, where (r); is the [component of the vector r. In general, this autocorrelation
can be computed numerically for a general domain.

Isotropic Point Processes

For an isotropic point process, we can similarly derive an estimator by starting from a
radially symmetric Dirac delta

Ep| S o —lxi-x])| = fma<r—x—x||>g<x—y>dxdy

Xi,XjE'D,l‘?Ej
3.7
2| o — [x—xDg(|x — y)dxdy BT
DxD

=)\QQ(I‘)J . ar, (r')dr’,

with the resulting estimator given by

() = 752 - dr,z 80— Ixi — x4, (3.8)

Pr Xi,X;€P,i#]

defined for the range of r values such that the denominator is non-zero. The version in a
previous work [21] can be obtained if the correction due to the domain D is omitted, and
instead all points in the point process in R are considered

Ep [; S(r — | — Xj’)] = JRdXRd d(r—|x —x|)o(x — y)dxdy
(3.9)
J 5(r =[x —x|)g(|x — y|)dxdy
2g(r)r?=1|Sy),

where |S4| denotes the volume of the hypersphere in d dimensions. The resulting estimator
is thus

i) = s S X A k) (310

Pr X; sXj €P,i#]

3.1 Spatial Measures 29

As we did for the estimator of g(r), we can practically omit averaging over different
distributions, and also use a normalized smoothing kernel k(r) with { k(r)dr = 1 to obtain

N 1
g(r) = m;k(r = lxi = x;])- (3.11)

The discussion so far implies that the estimator in the above equation is biased due to
the use of a smoothing kernel, and more importantly, in order to use this version of the
estimator, we need to consider an infinite domain. The practical version of this infinite
domain is a toroidal domain with periodic boundary conditions. We provide how this can
be implemented below.

#adapted from:

#https://github.com/cfinch/Shocksolution_Examples/tree/master/PairCorrelation

procedure pairCorrelationFunction2D(x, y, S, rMax, dr):
"""Compute the two-dimensional pair correlation function, also known
as the radial distribution function, for a set of circular particles
contained in a square region of a plane. This simple function finds
reference particles such that a circle of radius rMax drawn around the
particle will fit entirely within the square, eliminating the need to
compensate for edge effects. If no such particles exist, an error is
returned. Try a smaller rMax...or write some code to handle edge
effects! ;)

Arguments:

X an array of x positions of centers of particles

y an array of y positions of centers of particles

S length of each side of the square region of the
plane

rMax outer diameter of largest annulus

dr increment for increasing radius of annulus

Returns a tuple: (g, radii, interior_indices)

g(r) a numpy array containing the correlation function
g(r)

radii a numpy array containing the radii of the

annuli used to compute g(r)

reference_indices indices of reference particles
W
from numpy import zeros, sqrt, where, pi, mean, arange, histogram
Number of particles in ring/area of ring/number of reference
particles/number density
area of ring = pi*(r_outer**2 - r_inner **2)

Find particles which are close enough to the box center that a
circle of radius

rMax will not cross any edge of the box

boolsl = x > rMax

bools2 = x < (S - rMax)

bools3 = y > rMax

bools4 = y < (S - rMax)

interior_indices, = where(boolsl * bools2 * bools3 * bools4d)
num_interior_particles = len(interior_indices)

if num_interior_particles < 1:
raise RuntimeError ("No particles found for which a circle of
radius rMax\
will lie entirely within a square of side length S.
Decrease rMax\

30 Chapter 3. Sampling Analysis

r

Figure 3.1: An example distribution by the underlying point process (top), and the estimated
PCF of the point process (bottom). The r axis is normalized with the maximum possible
distance between pairs of points for this square domain and number of points (1024) [21].
The distributions become more regular from left to right. This is reflected in the PCF’s: the
first peak shifts to higher values of 7, and more peaks appear as the distributions become
more regular.

or increase the size of the square.")

edges = arange (0., rMax + 1.1 * dr, dr)
num_increments = len(edges) - 1

g = zeros([num_interior_particles, num_increments])
radii = zeros(num_increments)

numberDensity = len(x) / S**2

Compute pairwise correlation for each interior particle
for p in range(num_interior_particles):
index = interior_indices[p]
d = sqrt((x[index] - x)**x2 + (y[index] - y)*%*2)
d[index] = 2 * rMax

(result, bins) = histogram(d, bins=edges)
glp, :] = result/numberDensity

Average g(r) for all interior particles and compute radii
g_average = zeros(num_increments)
for i in range(num_increments):

radii[i] = (edges[i] + edges[i+1]) / 2.

rOuter = edges[i + 1]

rInner = edges[il]

g_average[i] = mean(gl[:, i]) / (pi * (rOuter**2 - rInner**2))
return (g_average, radii, interior_indices)

Listing 3.2: Pair Correlation Function

Examples of estimated PCF’s for isotropic point processes, along with an example
distribution generated by the underlying point process, are shown in Figure 3.1.

3.2

3.2.1

3.2 Spectral Measures 31

Spectral Measures

Fourier domain provides another set of tools to analyze and understand the sample distribu-
tions. The most popular tools are the periodograms or the power spectrum. Ulichney [28|
was the first to provide qualitative characterization of a good sampling pattern, which is
now commonly called Blue Noise. Mitchell [17] has also pointed out that energy in the
low-frequency part of the Fourier spectrum of the sampling pattern should be avoided.
These studies show the significance of Fourier tools in understanding error in Monte Carlo
rendering. In this section, we will see how periodograms (power spectra) are fundamentally
related to the pair correlation function, and provide code snippets on how to implement
power spectra and their corresponding radial counterparts that help analyze error in
integration.

Power spectrum

In order to define power spectrum, we first define a sampling function, which is a sum of
Dirac impulses at the sampling points for a particular distribution s(x) = >}, 0(x — x;).
Denoting the Fourier transform of this function with S(v) = % [s(x)](v) , we can then
define the power spectrum P(v) as

PW) = {Ep[S0)5W@)] (3.12)

where S(v) is the complex conjugate of S(v). This expression can be expanded by plugging
in the expression for S(v) as

Pv) = %Ep {%} eQT”‘VTrjk]. (3.13)

It is important to see how P(v) relates to g(r). We start by deriving the Fourier
transform G of PCF g, starting from its expression in Equation 3.3

G(v) = Z[g(r)](v) = %EP Z F[0(r — (x5 — xx))](v)
Ik (3.14)

_ %EP Z e—?ﬂ'iVTI'jk
j#k

We can also derive the following using Campbell’s theorem

EPZ1=AJ dx = \. (3.15)
- v
J

Finally, we can sum these to get

1 , 1
AG(v) +1 = 1Ep > e~ 2miv T |y XEPZ 1
Jj#k J

- (3.16)
= —Ep Z LT P(v).

jk

3.2.2

32 Chapter 3. Sampling Analysis

Hence, we can write the relation
P(v)=)\G(v) + 1. (3.17)

This equation makes it clear that power spectrum and pair correlation function carry the
same information regarding the second order characteristics of a point process, and both
only make sense for stationary point processes. The difference is the ease certain properties
can be read out from their estimators.

There exist many fast variants of estimating power spectrum with discrete Fourier
transform, however, following Heck et al. [9], we emphasize on using the continuous Fourier
transform version as above to analyze sampling patterns as we show in the code snippet
below.
procedure powerSpectrum(samples, spectrumWidth, spectrumHeight)

int N = samples.size ()
for u: 0 — spectrumWidth{

for v: 0 — spectrumHeight{
double real = 0, imag = O0;

//compute the real and imaginary fourier coefficients
for(int k=0;k<N;k++){
real += cos(2 * m * (u * samples[k].x + v * samples[k].y));
imag += sin(2 * 7 * (u * samples[k].x + v x samples[k].y));

}

//power spectrum is the magnitude square value of the coefficients
power [u * spectrumWidth + v] = (real*real + imag * imag) / N;

}

return power;

}
Listing 3.3: Fourier power spectrum

The expected power spectrum is computed by averaging these power spectra over
multiple (usually 1000) realizations.

Radial Domain Analysis

We have already seen that for isotropic point processes, the PCF is a 1-dimensional function
representing distribution of distances between pairs of points. Similarly, power spectrum
can also be summerized with a 1-dimensional radial average for isotropic point processes.
This radially averaged Fourier power spectrum [28] has been perhaps the most widely used
tool to analyze point samples, characterizing various stochastic sampling patterns ranging
from white noise to blue noise, and more recently used to derive variance convergence rates
of various stochastic samplers [22]. The pseudo-code (Listing 3.4) to generate radial average
is quite simple and requires only the expected power spectrum.

procedure radialAverage (expectedPowerSpectrum, spectrumWidth,

spectrumHeight) {
int halfWidth = 0.5 * spectrumWidth;

int* histoCounter = new int[halfWidth]();
double* radialHistogram = new double[halfWidth] () ;

//center corresponds to the DC frequency
int center = halfWidth;
for r: 0 — spectrumWidth{

for ¢: 0 — spectrumHeight{

3.2 Spectral Measures 33

double dx = center-c;

double dy = center-r;

double distance = sqrt(dx*dx+dyx*dy);
int imglIndex = r*spectrumWidth+c;
int index = distance;

//consider frequencies that are less than halfWidth
if (distance > halfwidth-1)
continue;
elseq
radialHistogram[index] += expectedPowerSpectrum[imgIndex];
histoCounter [index] += 1;
}
}
}
//normalize all the bins
for(int i = 0; i < halfwidth; i++){
radialHistogram[i] /= double(histoCounter [i]) ;
}
//dump it in a file
std::ofstream file;
file.open(filename.c_str());

for(int i = 0; i < halfwidth-1; i++)
file << i << " " << std::fixed << std::setprecision(15) <<
radialHistogram[i] << std::endl;

file.close () ;

//clear memory

delete [] histoCounter;

delete [] radialHistogram;

Listing 3.4: Radially averaged power spectrum

Radial Variance & Anisotropy

While radial averaging is appropriate for analyzing isotropic power spectra, many of the
stochastic point sampling strategies used in rendering—such as N-rooks [26] or even jittered
sampling [4]—are in fact anisotropic. Instead of considering the full 2-dimensional power
spectrum, an easy way to inspect anisotropy within a spectrum is by computing the radial
variance of the expected power spectrum. Following [13], radial variance computes the
squared deviation of the expected power spectrum from its radially averaged version:

n(p)
Vip) = 2 (Pl) = Plo) (319)

where n(p) is the number of considered frequency samples v; with [v;|? = p for computing
the estimator at this radius p, and P(p) = % Z;Lipl) P(vj) is the radial average of the
power spectrum P(v). The corresponding radial anisotropy can be computed as follows:

A(p) = 10 = logy, [P(pl))ip]é(p)]

The anisotropy is typically defined when the power spectra is averaged only over 10
realizations in the literature. This however could result in a noisy estimate. To compute
anisotropy for any given number of realizations (trials) we can simply divide the radial
anisotropy computed from (3.19) by log;,(trialCount), where trialCount is the trial count.

(3.19)

3.3

34

Chapter 3. Sampling Analysis

procedure radialVariance (expectedPowerSpectrum,
spectrumHeight)

spectrumWidth ,

int halfWidth =
int center = halfWidth;
int* histoCounter =

for r: 0 — spectrumWidth{
for c¢: 0 — spectrumHeight{
double dx = center-c;
double dy = center-r;
double distance =
int imglndex =
int index = distance;
//0nly consider frequencie
if (distance > halfWidth-1)
continue;
elseq
double deviation =
radialHistogram[index];
radialVariance [index] +=

expec

histoCounter [index] += 1;

}
}
}
for(int k = 1; k < halfWidth;

radialHistogram,

spectrumWidth*0.5;

new int[halfWidth] () ;

sqrt (dx*dx+dy*dy) ;
rxspectrumWidth+c;

s that are less than halfWidth

tedPowerSpectrum[imgIndex] -

(deviation*deviation) ;

B

k++) {

radialVariance [k] /=
radialAnisotropy[k] =

(histoCounter [k]-1);
10*loglO(radialVariance [k] /

(radialHistogram[k]*radialHistograml[k]));

/// Anisotropy scales

by loglO(numTrials),

/// below to make sure Anisotropy always scales to

if (trialCount > 1)
radialAnisotropy [k]
}

delete [] histoCounter;

/= loglO(trialCount) ;

Listing 3.5: Radial variance (anisotropy)

therefore,

we normalize
-10dB.

The radially averaged power spectrum as in the last section, along with the variance as
defined here, provide a summary of the power spectrum of a point pattern. We will provide
a more detailed analysis on anisotropy in the power spectrum in the next chapter.

Discrepancy

We will focus on star discrepancy of a sample distribution which can be easily computed by
counting the number of samples within axis-aligned boxes B = {[0,v1] x [0, v2] x [0,v3] x
- x [0,vx]} where 0 < v; < 1. Given a sequence of sample points S = x, ..., z,, the

discrepancy of S with respect

7{(Ba53::beB

which can be easily written in

sup ﬂ{xk € b}
n

to B is

V(b) Y

a code snippet as below:

procedure StarDiscrepancy(samples, N){

(3.20)

3.3 Discrepancy

35

int totalNumTrials = 100000;

std::vector<double> supDiscrepancy(totalNumTrials, 0.0);

for (int trial = 0; trial <= totalNumTrials; trial++){

double xBoxLimit = drand48();
double yBoxLimit = drand48();
double Area = xBoxLimit * yBoxLimit;

int totalCount = 0;

for(int k=0; k < n; k++){

double x = samples [k]
double y = samples [k]

LX;
-¥s

//assuming samples €[0,1) x [0,1) in 2D
if (x < xBoxLimit && y < yBoxLimit)

totalCount += 1;
}
supDiscrepancy [trial]

}

= fabs((totalCount / double(n)) - Area);

std::sort (supDiscrepancy.begin(), supDiscrepancy.end());
std::cerr << "\nStar Discrepancy: " << supDiscrepancy[totalNumTrials-1]

<< std::endl;

Listing 3.6: Star discrepancy

4.

4.1

Error Analysis in Monte Carlo Integration

In this chapter, we apply the analysis tools explained so far for analyzing error in the
estimator I := " | w;f(x;) for the integral I = @SD f(x)dx, specifically focusing on
common patterns encountered in rendering. As we will see below, the expressions for error,
consisting of bias and variance terms, turn out to only depend on first and second order
statistics of point processes with relatively simple formulas either in spatial or spectral

domains [20, 22|.

General Point Patterns

We start with the case of general point processes, where we have no prior assumptions on
any order of correlations. Note that this case covers all possible point patterns. To derive
bias and variance, we need to derive expressions for Ep[/] and Ep[/2]. Assuming that the
weights w; in the estimator I are sampled from a continuous positive function such that
w; = w(x;), and setting f; = f(x;), the expected values can then be derived as follows

Ep[i] = Ep [Zw(xi) f(xi)] - J w(x) f(xX)A(x)dx. (4.1)

D

In order to derive Ep [f 2], we first rewrite it as Ep [Zl 2 Wi fiw; fj] +Ep [Z (w; fi)Q]. Using
Equations 2.2 and 2.1 for the first and second terms, respectively

Br 2] = | wGsu)fyetyixdy + [o’ 00Axdx (42
DxD D

Note that although the integrals are over the support D of the function f, we could
equivalently write them over R?. Using these expressions, we can then write the expressions

for bias biasp[I] = I — Ep[I], and variance varp[I] = Ep[I?] — (Ep[I])? as

biasp[I] = fD w(x) f(x)A(x)dx — 1, (4.3)

4.2

38 Chapter 4. Error Analysis in Monte Carlo Integration

varp[f] = fmw(x)f(x)w(y)f(y)g(x,y)dxdy n L 0 (%) 2 (x)A(x)dx

2
- (J w(x)f(x)A(x)dx) (4.4)
D
- f w(x) FO)w(y) F()[e(x,y) — AA(y)]dxdy + f 0 (%) 2 (A (x)dx.
DxD

D

These expressions prove that error in integral estimation merely depends on the first and
second order product densities of a point process. This is a considerable simplification and
justifies our focus on first and second order statistics A and p. Sampling with adaptive
density, such as importance sampling, is nicely captured by A(x). Note, though, that such
an adaptive density can in general also affect o(x,y). Later we will show that we can
actually model adaptivity to factorize the effect of it on . But we first focus on a simpler
and yet very common case.

Stationary Point Patterns

A very important special case is when the points in a pattern do not follow any given
probability density, i.e. the pattern is indifferent to where we are in space. Unless importance
sampling is introduced, most patterns in rendering fall into this category. These patterns can
be conveniently modelled by stationary or isotropic point processes, or their approximations.
These will also form the basis for the analysis of adaptive patterns.

As discussed in Section 2.2.2, for stationary point processes A(x) = A, and o(x,y) =
A2g(x—y). As \is a constant, we choose w(x) = 1/(A\|D|). Plugging these into Equations 4.3
and 4.4, we get the following expressions for bias and variance for this case

biasp[l] = /\\/\D\ JD f(x)dx —I =0, (4.5)
varnll] = o [S0l —y) ~ xdy + s | Pe0B (46)

A few important points can be directly observed here:

e The dependence on intensity A appears only in the second term explicitly, and for a
point process generating completely random distributions with g(r) = 1, the variance
varp[I] = ﬁ §p f2(x)dx decreases with A~ as well-known. For patterns with
second order correlations, the first term will contribute to decreasing the error, and
hence affect convergence.

e The goal of unadaptive sampling algorithms is then finding a g in an offline step that
will adapt to typical functions encountered in practice to minimize the first term.
Note that g compresses as A is increased, as the distances between points are getting
smaller for higher number of points. The final convergence rate with respect to A
thus depends on the interplay between g and the class of integrands considered.

Spectral Analysis

In order to derive the spectral form of error, we need to assume a toroidal domain for the
space on which the point process is defined [20, 22]. We thus assume that D is toroidal

4.2.1

4.2 Stationary Point Patterns 39

with unit volume. The expression in Equation 4.6 can then also be written in the following
form

varpli) = § [P [oo - ([reox) } (4.7)

This form with the autocorrelation of f provides a direct link to the spectral counterpart.
In order to derive the spectral expression, first note that Flas(r)](v) = P¢(v), where F
is the Fourier transform, and Py(v) is the power spectrum of the function f. Following
Equation 3.13, we can also easily show that P(0) = %E’/D[Zij 1] =)‘72 = \. Utilizing
properties of the Fourier transform, and the relation P(v) = AG(v) + 1 (Equation 3.17),
we can then write the expression in the spectral domain as follows:

varp[l] = % fPf(V)dV + JPf(V)G(V)dV — P¢(0)
— f (PfA(”) T Pf(u)P(”i1> dv — Pf(O)Pg\O) (4.8)
1
=3 ” Py(v)P(v)dv.

Depending on the problem and class of functions considered, one can thus either try to
adapt the PCF using Equation 4.6, or the power spectrum with the above equation.

Isotropic Point Patterns

For isotroic point patterns generated by isotropic point processes, we can simply use the fact
that g(r) = g(r), and P(v) = P(v), i.e. both are radially symmetric. Then the integrals in
the second term of Equation 4.7, and Equation 4.8 can be integrated along radial and all
non-radial directions individually, giving rise to radial averages of ay or Py multiplied and
integrated with g(r) or P(v), respectively.

To analyze the variance and convergence rate of specific sampling patterns, Pilleboue
et al. [22] further simplify Equation 4.8 by going to polar coordinates and collapsing the
integrand’s power spectrum Py and the expected sampling power spectrum P —under
the assumption of isotropic sampling power spectra—into their radial averages]5f and P
arriving at

0

varp[l] = ifo p*~ P (p)P(p)dp. (4.9)

With this simplification, their primary contribution was showing that if the radially averaged
sampling power spectra can be expressed analytically, then the corresponding variance
convergence rates can be derived for a given class of functions. To more easily apply this
idea to complex radial power spectra, they showed that it is often sufficient to piecewise
bound the radial mean power spectrum using a monomial in the low-frequency region and
a constant for high frequencies, with the degree of the low-frequency monomial bound
ultimately determining the convergence rate. Unfortunately, by relying on radially averaged
power spectra, Pilleboue et al.’s analysis only truly applies to isotropic point sampling
spectra. This also restricts the scope of their convergence tools since the radial mean would
not take into account the anisotropy present within the integrand and therefore, cannot
exploit it to improve convergence rates.

4.2.2

40

Chapter 4. Error Analysis in Monte Carlo Integration

Power

radial mean Power N .
radial mean

1

0 1 2 3 4

1
Frequency Frequency

(a) N-rook power spectrum (b) Blue noise power spectrum

Figure 4.1: Anisotropic structures within N-rooks sampling spectrum in (a) are due to
the underlying construction which enforces dense 1D stratification along the canonical X
and Y axes. This results in hairline anisotropies along the canonical axes in the resulting
power spectrum. In (b), the isotropic blue noise sampling power spectrum is sheared (e.g.
to adapt to an integrand) that causes anisotropy within samples and its spectrum. Note
that these anisotropic structures are not reflected in their radially averaged counterpart.

Anisotropy in Point Patterns

Correlations present within the samples can be adapted to the integrand to improve error.
However, this might result in introducing certain kind of anisotropy within the samples.
Anisotropy can also be introduced from the way samples are constructed. For example,
N-rooks, jittered and multi-jittered samplers are classic examples of anisotropic samplers
(Figure 4.1).

While radial averaging is appropriate for analyzing isotropic Fourier power spectra,
for anisotropic sampling power spectra, radial averaging can be less informative, or worse,
misleading. For example, in Figure 4.1, the 2D N-rooks sampling pattern has radial behavior
of a jittered sampling power spectrum along the canonical axes, but a flat, white noise
radial behavior in other directions. This information is lost in the radially averaged power
spectrum shown at the top of the radial plots. Most of the signals that we encounter
in light transport are also anisotropic in nature, with their spectra having most of their
energy confined to a wedge shape [5]. Existing sampling patterns, including quasi-random
samples (e.g. Halton, Sobol), have not been able to exploit this knowledge despite having
strong anisotropic properties in most projections. Singh and Jarosz [27] establishes a direct
relation between the anisotropy of the sampler and the integrand under study, generalizing
and extending the reach of prior analyses [22]| that relied on radial averaging. Singh and
Jarosz proposed the following variance formulation for any anisotropic sampling power
spectra:

A 1

m. oo
varp[l] = § lim Y’ fo 1B [P(png)] P(pow)dp Any (4.10)
k=1

where, Any, is the differential volume of the k-th cone. In the limit, no angular variation
is assumed within the k-th differential cone, which allows to consider a single direction
corresponding to each cone. Here, Any is a constant that becomes infinitesimally small
as m tends to infinity. From (4.10), variance of Monte Carlo integration can be obtained
by summing the radially integrated terms along each individual direction ng. This implies
that, irrespective of whether our expected sampling power spectrum is isotropic or not, we
can analyze each direction independently to know the overall behavior of the underlying
sampler.

423

4.3

4.3 Point Patterns with Non-constant Intensity 41

Quasi-Monte Carlo Sampling

Distributions generated by Quasi-Monte Carlo sampling algorithms are not strictly random,
as they result from deterministic processes. However, ideally, a quasi-Monte Carlo sampling
algorithm should mimic a stationary point process. Indeed, more advanced techniques such
as Halton and Sobol sequence sampling generate almost stationary point patterns, and
hence lead to minimally biased integration results. We can thus use intensity and pair
correlation function to study such patterns as well.

Point Patterns with Non-constant Intensity

In practice, adaptivity is an important concern in point patterns used in rendering, as it can
be shown that adaptivity improves convergence rates. In this section, we show how adaptive
density can be modeled within the framework of point processes, and the analysis for the
constant intensity case can be extended for the common ways adaptivity is introduced into
patterns in rendering. Adaptive sampling is obtained by assuming an interaction model
between points, such as repulsion, and setting a specialized spatially varying density for a
given integrand, which changes both A and g. There are several ways of introducing it.

Locally Scaled Processes and Warping

One way of defining a point process with adaptive density is via defining a distance measure
such that distances become smaller in areas of high density. This is the idea behind
several extensions of blue noise sampling commonly used for artistic applications and
non-photorealistic rendering |3, 14, 30|, and also known as locally scaled point processes
in statistics [8]. Although useful for applications such as halftoning and stippling [6, 24|,
distributions from such point processes can only be generated via costly algorithms. Hence,
such point processes are not used in rendering.

Another way to implement adaptive density is by starting from a non-adaptive, e.g.
stationary, point process, and warping the resulting distributions with a given function.
This is typically used in rendering for importance sampling, i.e. to place more samples
into regions where the integrand has higher values. For these cases, analysis is challenging
as o(x,y) = g(t~1(x) — t~!(y)) for a warping function ¢, and PCF g of the underlying
stationary process to start with.

Unbiased Adaptive Sampling

The expressions start to simplify if we assume an unbiased estimator with w(x) = 1/\(x).
Starting from Equation 4.4, the variance in this case can be easily rewritten as

%) o5 y) o :
S dx + jf(X)f(Y))\(x))\(y)dXdy <ff(x)dx) . (4.11)

varp(I) = f

The first term shows the well-known observation in importance sampling that the intensity
should follow the integrand for minimal variance. Note, however, that this is only true if no
adaptivity is assumed for g. Conversely, if we fix a certain density by fixing the intensity

A(x), o(x,y) should be kept as small as possible when the term igi;{g; is high.

Intensity-reweighted Stationary Point Processes

Another set of techniques estimate measures such as the variation of the integrand, and
distribute more samples in those regions, often iteratively [2, 7, 19, 31]. The variance of the
resulting point patterns can be described by second-order intensity-reweighted stationary
point processes [11].

42 Chapter 4. Error Analysis in Monte Carlo Integration

For these processes, o(x,y) = A(X)A(y)g(x —y). We can plug this form of g into the
equations for bias and variance of general point processes in Section 4.1, with the definition
v(x) = AM(x)w(x)f(x) to get

biasp(l) =1 — JD v(x)dx, (4.12)
[U X v(x)v x—y)—1)dx
varn(h) = [S8+ | oy (o(x —y) = 1)axdy. (4.13)

For unbiased sampling, w(x) = 1/A(x), and hence v(x) = f(x). In this case, we get the
most simplified form for variance when assuming an adaptive model

[) = f2(X) X X X — — X
varp(D) = [Z8ax+ [fs(3)(atx —y) = 1axdy

- LJ Jf((xx)) et fRd as(r)g(e)dr - (JD f(X)dX> 2 .

We see a clear a separation of the effect of the first order A, and second order correlations
captured by g in this case. The first term tells us to set A proportional to f, as in importance
sampling, and the second term suggests a further optimization depending on ay. Note that
classical importance sampling is a special case with g(r) = 1.

(4.14)

5. Conclusions

5.1

Recent Developments and Future Directions

The main motivation behind this work has been the theoretical advances to understand
the interplay between first and second order correlations of point patterns, and integrands
encountered in rendering. As we elaborated on in previous sections, it is now possible to
study the full range of correlations at the same time for choosing best sampling patterns.
We believe, however, that these are yet to be utilized for more practical improvements.

One problem is the high dimensional nature of p(x,y), especially for the high dimensional
integrands encountered in rendering, creating problems for visualization and developing
insight. This is currently handled by assuming a stationary point process, and 2-dimensional
slices from the pair correlation function. Although there are attempts in other domains 23],
statistics summarization and visualization remain a challenge.

If the integrand is known, or can be estimated on the fly, point distribution can be
adapted accordingly. So far, this has been the standard practice for first order correlations,
i.e. point density, in importance sampling. Recently, adapting anisotropy for stationary
point processes [27] or general correlations with the assumption of locally stationary point
processes [23] have been proposed. We believe general adaptations with fast algorithms
integrated well with rendering frameworks can significantly improve render times and
quality.

Finally, although it is now possible to carefully define forms for point process statistics
based on extracted or learned properties of integrands, and such statistics can then be
used to synthesize new point distributions with existing algorithms [1, 9, 12, 21, 29, 32|,
such synthesis techniques are still either costly, or does not extend to progressive high
dimensional sampling. Developing efficient and progressive algorithms that scale well with
dimension and integrate with current renderers remains a major challenge.

5.2

44 Chapter 5. Conclusions

Resources for Stochastic Point Processes

Please check our course repository for a list of sources: https://github.com /sinbag/
SamplingAnalysisWithCorrelations.

https://github.com/sinbag/SamplingAnalysisWithCorrelations
https://github.com/sinbag/SamplingAnalysisWithCorrelations

Bibliography

Books

[11]

Janine Illian et al., editors. Statistical Analysis and Modelling of Spatial Point Patterns.
John Wiley and Sons, Ltd., 2008 (cited on pages 17, 21, 41).

[18] Jesper Mgller and Rasmus Plenge Waagepetersen. Statistical inference and simula-
tion for spatial point processes. Boca Raton (FL.), London, New York: Chapman &
Hall/CRC, 2003, 2004. 1SBN: 1-584-88265-4 (cited on page 17).

[28] Robert Ulichney. Digital Halftoning. Cambridge, MA, USA: MIT Press, 1987. 1SBN:
0-262-21009-6 (cited on pages 30, 32).

Articles

[1] Abdalla G. M. Ahmed, Hui Huang, and Oliver Deussen. “AA Patterns for Point
Sets with Controlled Spectral Properties”. In: ACM Trans. Graph. 34.6 (Oct. 2015),
212:1-212:8. 18sN: 0730-0301 (cited on page 43).

[2] Laurent Belcour et al. “5D Covariance Tracing for Efficient Defocus and Motion
Blur”. In: ACM Trans. Graph. 32.3 (July 2013), 31:1-31:18. 1sSN: 0730-0301 (cited on
page 41).

[3] Jiating Chen et al. “Bilateral Blue Noise Sampling”. In: ACM Trans. Graph. 32.6
(Nov. 2013), 216:1-216:11. 15sN: 0730-0301 (cited on page 41).

[4] Robert L. Cook. “Stochastic sampling in computer graphics”. In: ACM Trans. Graph.
5.1 (1986), pages 51-72. 1SsN: 0730-0301 (cited on page 33).

[5] Frédo Durand et al. “A Frequency Analysis of Light Transport”. In: ACM Trans.
Graph. 24.3 (July 2005), pages 1115-1126. 1ssN: 0730-0301 (cited on page 40).

[6] Raanan Fattal. “Blue-noise Point Sampling Using Kernel Density Model”. In: ACM

Trans. Graph. 30.4 (July 2011), 48:1-48:12. 1ssN: 0730-0301 (cited on page 41).

46

Chapter 5. Conclusions

7]

8]

9]

[10]
[12]

[13]

[14]
[15]

[16]

[17]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Toshiya Hachisuka et al. “Multidimensional Adaptive Sampling and Reconstruction for
Ray Tracing”. In: ACM Trans. Graph. 27.3 (Aug. 2008), 33:1-33:10. 1ssN: 0730-0301
(cited on page 41).

Ute Hahn et al. “Inhomogeneous spatial point processes by location-dependent scaling”.
In: Adv. in Appl. Probab. 35.2 (2003), pages 295-550 (cited on page 41).

Daniel Heck, Thomas Schléomer, and Oliver Deussen. “Blue Noise Sampling with
Controlled Aliasing”. In: ACM Trans. Graph. 32.3 (July 2013), 25:1-25:12. ISSN:
0730-0301 (cited on pages 14, 32, 43).

F.J. Hickernell. In: John Wiley & Sons, Ltd, (2014) (cited on page 23).

Bhavya Kailkhura et al. “Stair Blue Noise Sampling”. In: ACM Trans. Graph. 35.6
(Nov. 2016), 248:1-248:10. 1ssN: 0730-0301. por: 10.1145/2980179.2982435. URL:
http://doi.acm.org/10.1145,/2980179.2982435 (cited on page 43).

Ares Lagae and Philip Dutré. “A Comparison of Methods for Generating Poisson
Disk Distributions”. In: Comput. Graph. Forum 27.1 (2008), pages 114-129 (cited on
page 33).

Hongwei Li et al. “Anisotropic Blue Noise Sampling”. In: ACM Trans. Graph. 29.6
(Dec. 2010), 167:1-167:12. 1SSN: 0730-0301 (cited on page 41).

Chongyang Ma, Li-Yi Wei, and Xin Tong. “Discrete element textures”. In: ACM
Trans. Graph. 30.4 (Aug. 2011), 62:1-62:10. 1SsN: 0730-0301 (cited on page 14).

Chongyang Ma et al. “Dynamic Element Textures”. In: ACM Trans. Graph. 32.4
(July 2013), 90:1-90:10. 1sSN: 0730-0301. po1: 10.1145/2461912.2461921. URL: http:
//doi.acm.org/10.1145/2461912.2461921 (cited on page 14).

Don P. Mitchell. “Spectrally Optimal Sampling for Distribution Ray Tracing”. In:
SIGGRAPH Comput. Graph. 25.4 (July 1991), pages 157-164. 1ssN: 0097-8930 (cited
on page 31).

Ryan S. Overbeck, Craig Donner, and Ravi Ramamoorthi. “Adaptive Wavelet Render-
ing”. In: ACM Trans. Graph. 28.5 (Dec. 2009), 140:1-140:12. 1sSN: 0730-0301 (cited
on page 41).

A. Cengiz Oztireli. “Integration with Stochastic Point Processes”. In: ACM Trans.
Graph. 35.5 (Aug. 2016), 160:1-160:16. 1ssN: 0730-0301 (cited on pages 14, 21, 37,
38).

A. Cengiz Oztireli and Markus Gross. “Analysis and Synthesis of Point Distributions
Based on Pair Correlation”. In: ACM Trans. Graph. 31.6 (Nov. 2012), 170:1-170:10.
1SSN: 0730-0301 (cited on pages 14, 28, 30, 43).

Adrien Pilleboue et al. “Variance Analysis for Monte Carlo Integration”. In: ACM
Trans. Graph. 34.4 (July 2015), 124:1-124:14. 1sSN: 0730-0301 (cited on pages 32, 37,
38, 40).

Riccardo Roveri, A. Cengiz Oztireli, and Markus Gross. “General Point Sampling
with Adaptive Density and Correlations”. In: Computer Graphics Forum (2017) (cited
on page 43).

Christian Schmaltz et al. “Electrostatic Halftoning”. In: Comput. Graph. Forum 29.8
(2010), pages 2313-2327. 1SSN: 1467-8659 (cited on page 41).

Christian Schumacher, Bernhard Thomaszewski, and Markus Gross. “Stenciling:
Designing Structurally-Sound Surfaces with Decorative Patterns”. In: Computer
Graphics Forum (2016). 1SSN: 1467-8659. DOI: 10.1111 /cgf.12967 (cited on page 14).

https://doi.org/10.1145/2980179.2982435
http://doi.acm.org/10.1145/2980179.2982435
https://doi.org/10.1145/2461912.2461921
http://doi.acm.org/10.1145/2461912.2461921
http://doi.acm.org/10.1145/2461912.2461921
https://doi.org/10.1111/cgf.12967

5.2 Resources for Stochastic Point Processes 47

[27]

[29]

[30]

[31]

[32]

Gurprit Singh and Wojciech Jarosz. “Convergence Analysis for Anisotropic Monte
Carlo Sampling Spectra”. In: ACM Trans. Graph. 36.4 (July 2017), 137:1-137:14.
1SsN: 0730-0301. por: 10.1145/3072959.3073656. URL: http://doi.acm.org/10.1145/
3072959.3073656 (cited on pages 40, 43).

Florent Wachtel et al. “Fast Tile-based Adaptive Sampling with User-specified Fourier
Spectra”. In: ACM Trans. Graph. 33.4 (July 2014), 56:1-56:11. 1SsN: 0730-0301 (cited
on page 43).

Li-Yi Wei and Rui Wang. “Differential domain analysis for non-uniform sampling”. In:
ACM Trans. Graph. 30.4 (July 2011), 50:1-50:10. 1sSN: 0730-0301 (cited on pages 26,
27, 41).

Turner Whitted. “An Improved Illumination Model for Shaded Display”. In: Commun.
ACM 23.6 (June 1980), pages 343-349. 1ssN: 0001-0782 (cited on page 41).

Yahan Zhou et al. “Point Sampling with General Noise Spectrum”. In: ACM Trans.
Graph. 31.4 (July 2012), 76:1-76:11. 1sSN: 0730-0301 (cited on page 43).

https://doi.org/10.1145/3072959.3073656
http://doi.acm.org/10.1145/3072959.3073656
http://doi.acm.org/10.1145/3072959.3073656

	Abstract
	About the Lecturers
	Course Syllabus
	1 Introduction
	1.1 Point Patterns in Computer Graphics
	1.2 Stochastic Point Processes
	1.3 Signal Processing
	1.4 This Course

	2 Background
	2.1 Probability
	2.1.1 Random Variables
	2.1.2 Expected Value, Mean, Variance, and Covariance

	2.2 General Point Processes
	2.2.1 Gaussian Point Processes
	2.2.2 Point Process Statistics
	2.2.3 Campbell's Theorem

	2.3 Fourier Transform
	2.3.1 Autocorrelation Theorem
	2.3.2 Projection-Slice Theorem

	2.4 Numerical Integration
	2.4.1 Quadrature Rules
	2.4.2 Monte Carlo Integration
	2.4.3 Quasi-Monte Carlo Integration

	2.5 Discrepancy Theory
	2.5.1 Koksma-Hlawka Inequality

	3 Sampling Analysis
	3.1 Spatial Measures
	3.1.1 Estimator for Intensity
	3.1.2 Estimators for the PCF

	3.2 Spectral Measures
	3.2.1 Power spectrum
	3.2.2 Radial Domain Analysis

	3.3 Discrepancy

	4 Error Analysis in Monte Carlo Integration
	4.1 General Point Patterns
	4.2 Stationary Point Patterns
	4.2.1 Isotropic Point Patterns
	4.2.2 Anisotropy in Point Patterns
	4.2.3 Quasi-Monte Carlo Sampling

	4.3 Point Patterns with Non-constant Intensity

	5 Conclusions
	5.1 Recent Developments and Future Directions
	5.2 Resources for Stochastic Point Processes

	Bibliography
	Books
	Articles

	Index

