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1 OVERVIEW

This document contains additional results to supplement explana-
tions and experiments of the main paper. Sec. 2 provides more details
on the variance reduction for gradients in the proposed network
architecture. In Sec. 3, we first reproduce full-size power spectra
(Fig. 1) for rank-1 and Fibonacci lattices from Fig. 13 of the main
paper that only shows the cropped versions. Additional results on
novel sampling patterns are shown in the following figures that
were optimized for different class of functions in multiple dimen-
sions. Fig. 5 shows improvement when a 3D sampler is optimized
for 2D projections vs. full-dimensional optimization.

2 VARIANCE REDUCTION

The estimation of point correlations by means of a single point set
realization is inherently noisy. To aid stability during training we

average the correlations of multiple realizations to reduce their vari-
ance. Consider point pattern realizations {X; ;':_01 resulting from our
network, and a target spectrum S. A typical loss in our framework

is defined as
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This is in contrast to typical mini-batching, which requires a loss
function that linearly adds terms corresponding to the training data,
i.e.,
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In our work, we enforce convex combinations of £ and L2, so
that the expected value of the stochastic gradient is equal to the
true gradient, which would require an infinite number of point set
realizations.

3 ADDITIONAL EXPERIMENTS
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Fig. 1. Full-size spectra of Rank-1 and Fibonacci samplers from Fig.13 of the main paper and their corresponding product with the averaged integrand spectra
is shown along each row. The spectra resolution in the middle-row is 2x higher than top and bottom rows spectra. Please see the main paper for more details.
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Fig. 2. Radially averaged power spectra are shown for novel sampling patterns in 2D, 3D and 4D. A full-dimensional optimization for N=1024 samples is
performed using the variance formulation (Eqn.5) from the main paper. From left-to-right, samples are optimized for a class of functions with a spectral fall-off
of: (a) g% in 2D, (b) g* in 3D and (c) g~ for 4D. Since the power spectra are isotropic, the insets on top-right in (b) and (c) shows only a single 2D projection
of the full-dimensional spectrum.
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Fig. 3. We optimize for novel 3D point patterns (N = 1024) but only in 2D projections. For each 2D projection, the sampling spectra is multiplied with the
integrand spectra (2D fonts from Fig.13) which serves as a loss function for that projection. The final loss is the sum over all losses. No target sampling spectra
was provided. The resultant spectral properties are novel and optimized w.r.t. the class of functions (fonts here) and is shown for each 2D projection. Note, that
our network effortlessly optimizes even when different subspaces have shared coordinate axes.
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Fig. 4. Similar to Fig. 3, here we optimize for novel 10D point patterns (N = 1024) but only in 2D projections. For each 2D projection, the sampling spectra is
multiplied with the integrand spectra (2D fonts from Fig.13) which serves as a loss function for that projection. The final loss is the sum over all losses. No
target sampling spectra was provided. The resultant spectral properties are novel and optimized w.r.t. the class of functions (fonts here) and is shown for each
2D projection.
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Fig. 5. Comparing samplers optimized in full dimensions (3D) versus their projective counterparts. This analysis shows improvements when optimization is
done only for 2D subspaces, without considering the full-dimensional properties.
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