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Random

We start with random sampling [CLICK] which involves randomly generating samples in the integration domain, the noise level is significantly high. We can improve this 
sample distribution by...
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Random

...dividing the domain in equal strata and placing the samples at the center of each stratum. The regularity has been known to cause some aliasing effects which can be 
easily avoided by randomly jittering...
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JitterRandom

...each sample independently in each stratum. This is called jittered sampling and as you might notice the noise level has already improved for the same sample count. 
We can further improve the uniformity of samples by, say,...
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JitterRandom

...generating a sample [CLICK] in the domain following a naive dart throwing approach where a radius is assigned to each sample and a new sample is only accepted if it 
falls outside the disk radius. This gives us Poisson disk samples...
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JitterRandom Poisson Disk

... which is well distributed and the corresponding noise in the image has also gone down for the same number of samples. Another way to decrease variance is to 
keep...



Variance Convergence Rate of Samplers
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Random

…increase the sample count till the image becomes noise-free (converge). The rate at which this image converges depend on the underlying sampling pattern used. For 
example, with random samples [CLICK] the convergence rate is always O(N^-1), 4D jittered samples [CLICK], we would obtain a 4D convergence rate of O(N^-1.25) 
whereas with Poisson disk…
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Poisson Disk

Variance Convergence Rate of Samplers

Pilleboue et al. [2015]

4D Jittered

…O(N�1.25)

Random

O(N�1)

… we can obtain less noisy images at small sample count but [CLICK] as we increase the samples the convergence rate obtained is O(N^-1).  
This reflects that if the sampling budget is small (which is the case in many interactive applications) it is best to use Poisson disk samplers, whereas for large sampling 
budget, for example in offline rendering for movie frames, we should consider samplers with good convergence. 
These convergence rates can be empirically computed using the sample variance. We proposed a mathematical convergence tool in the Fourier domain, which allows to 
theoretically derive these convergence rates for blue noise samples. Now, lets try to understand what characteristics of these samples are affecting the quality of the 
rendered images.
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Stochastic samplers

QMC samplers

Stratification strategies

We start by looking into error introduced by different stratification strategies

[CLICK] We then analyze error due to blue noise distributions and how this idea is extended beyond to introduce discrepancy related measures

[CLICK] In the end, we will briefly look at how to analyze importance sampling using the presented Fourier tools and how correlated samples could affect the 
convergence properties of these importance sampling strategies.
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Blue noise sampling  
and beyond

Importance sampling

with correlated samples
Stochastic samplers

QMC samplers

Stratification strategies

We start by looking into error introduced by different stratification strategies

[CLICK] We then analyze error due to blue noise distributions and how this idea is extended beyond to introduce discrepancy related measures

[CLICK] In the end, we will briefly look at how to analyze importance sampling using the presented Fourier tools and how correlated samples could affect the 
convergence properties of these importance sampling strategies.



Regular grid samples
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Regular Uniform jitter Random jitter

Pauly et al. [2000]

Regular grid

The regular artifacts due to regular grid sampling can be avoided by simply shifting...



Uniformly jittered regular grid
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Regular Uniform jitter Random jitter

Pauly et al. [2000]

Uniform jitter

... the samples randomly within the strata, which is called uniform jitter sampling. 



Uniformly jittered regular grid
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... the samples randomly within the strata, which is called uniform jitter sampling. 



Randomly jittered samples
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Regular Uniform jitter Random jitter

Randomly jittered samples

!14

Pauly et al. [2000]

Random jitter

Another approach to avoid these artifacts is to randomly generate samples within each stratum that is called random jittering



Regular Uniform jitter Random jitter

Randomly jittered samples
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Pauly et al. [2000]

We would like to understand how these two different strategies affect the error during rendering.



Random jitter

Randomly jittered samples
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Random jitter 
(RMS 10.4%)

Ramamoorthi et al.  
[2012]Uniform jitter

Uniform jitter  
(RMS 13.4%)

Here we show one example, where for Quad (square) area light source, random jittered sampling [CLICK] gives less noisy image compared to uniform jittering. Let's try to 
understand why is that.
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Canoncial square domain

Occluded Visible

Square area light source

Random jitterUniform jitter

Here we are looking at a light source sampled using uniformly jittered samples. The orange part is occlude whereas the yellow part is visible from the light source. 

[CLICK] If we look at these samples near the discontinuity, uniform jittering shifts all samples on one side of the discontinuity creating some kind of positive correlation 
with respect to the discontinuity. However, with randomly jittered samples...
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Canoncial square domain

Occluded Visible

Square area light source

Random jitterUniform jitter

...if we look at the set of pixels with the discontinuity [CLICK], since the samples were generated randomly jittered, samples can be easily found on either side of the 
discontinuity. This decorrelates randomly jittered samples w.r.t. the discontinuity resulting in less noise.
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Now, if we change the shape of our light source to a Disk light, we see that [CLICK] uniform jitter is far better than random jittering. Furthermore,...
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Polar mapping performs better for some 
samplers compared to concentric mapping

!20

observed by Andrew Kensler [2013]

It was observed that for circular light source, the way these samples are mapped also affect the quality. Surprisingly, polar mapping performs better than concentric 
mapping in some cases. Let's first look at these mappings.
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Canoncial square domain

Occluded Visible

Square area light source

Per Christensen [2018]

Samples in a circular domain or Disk are generated by warping the samples from the square domain using, say, polar mapping, which ...
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Polar mappingCanoncial square domain

Occluded Visible

Square area light source Disk area light source

Per Christensen [2018]

... which distributed samples in this manner. 

[CLICK] If we look at the samples near the discontinuity, on the Disk [CLICK] they are placed on either side of the domain in a concentric ring. Here the strata are of 
uneven shape due to the distortion by the polar mapping which is not considered good, but it was reported that this might explain why polar mapping behaves better for 
correlated multi-jittered samples (by Kensler) then concentric mapping. In concentric mapping, ...
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Concentric mappingCanoncial square domain

Occluded Visible

Square area light source Disk area light source

Polar mapping

Per Christensen [2018]

Shirley and Chiu [1997]

... the strata have a very similar shape compared to the square strata and

if we look again at these samples near the discontinuity, they remain [CLICK] in almost the same vicinity.
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Cengiz analyzed this further and observed that with Disk light sources... 
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...sometimes uniform jitter is good and sometimes bad compared to random jittering. He proposed another variant named isotropic jittering.
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Isotropic jitter = uniform jitter + random rotation

!27

The idea is,

[CLICK] you first randomly shift the samples and then,

[CLICK] randomly rotate them.
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Rotated uniform jitter better for not too complex shadows

This showed improvements for not too complex shadows, especially when this rotation is done with some knowledge of the orientation of the occlusion boundaries.
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Stochastic samplers

QMC samplers

Stratification strategies

This shows that these simple correlations introduced by different jittering variants can favorably affect the error.

[CLICK[ Let's now look at how other correlations, namely blue noise samples, affect the error in Monte Carlo estimation.
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Blue noise sampling  
and beyond

Stochastic samplers

QMC samplers

Stratification strategies

This shows that these simple correlations introduced by different jittering variants can favorably affect the error.

[CLICK[ Let's now look at how other correlations, namely blue noise samples, affect the error in Monte Carlo estimation.



Fourier analysis of sample correlations
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Fourier tools are often used to understand the characteristics of sample correlations



Expected power spectrum for random samples
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at

For example, we can compute the expected power spectrum of random samples, which is a flat gray image. This spectrum can be [CLICK] radially averaged to get a 1D 
radial version of this spectrum. Here, [CLICK] the center of the 2D spectrum is the DC peak (or the zero frequency), which represents the starting frequency of the radially 
averaged spectrum.
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advocated three important features for an ideal radial power spectrum; First, its peak should be at
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at

For example, we can compute the expected power spectrum of random samples, which is a flat gray image. This spectrum can be [CLICK] radially averaged to get a 1D 
radial version of this spectrum. Here, [CLICK] the center of the 2D spectrum is the DC peak (or the zero frequency), which represents the starting frequency of the radially 
averaged spectrum.
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sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
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5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at

Samples Expected power spectrum Radial mean

For jittered samples, the spectrum changes and gets some dark region in the low frequency region around the DC peak which is also well captured in the radially 
averaged profile between the range [0,1]. Note that the horizontal axis in the radial profile represents a normalized frequency (m/sqrt[N] value for an m-th frequency).
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Figure 5.9: Illustration of some well known blue noise samplers with the corresponding Fourier
expected power spectra and the corresponding radial mean of their expected power spectra.

5.3.3 Tiling-based methods
There are some tile-based approaches that can be used to generate blue noise samples Tile-based
methods overcome the computational complexity of dart-throwing and/or relaxation based ap-
proaches in generating blue noise sampling patterns. In computer graphics community, two
tile-based approaches are well known: First approach uses a set of precomputed tiles [10, 25], with
each tile composed of multiple samples, and later use these tiles, in a sophisticated way, to pave the
sampling domain. Second approach employed tiles with one sample per tile [34, 33, 49] and uses
some relaxation-based schemes, with look-up tables, to improve the over all quality of samples.
Although many blue noise sample generation algorithms exist, none of them are easily extendable
to higher dimensions (> 3).

5.4 Interpreting and exploiting knowledge of the sampling spectra

Recently [39], it has been shown that the low frequency region of the radial power spectrum (of a
given sampling pattern) plays a crucial role in deciding the overall variance convergence rates of
sampling patterns used for Monte Carlo integration. Since blue noise sampling patterns contains
almost no radial energy in the low frequency region, they are of great interest for future research
to obtain fast results in rendering problems. Surprisingly, Poisson Disk samples have shown the
convergence rate of O

�
N�1� which is the same as given by purely random samples. This can

be explained by looking at the low frequency region in the radial power spectrum of Poisson
Disk samples (Fig. 5.9) which is not zero. The importance of the shape of the radial mean power
spectrum in the low frequency region demands methods and algorithms that could eventually allow
sample generation directly from a target Fourier spectrum.

5.4.1 Radially-averaged periodograms
Figures 5.6, 5.8 and 5.9 depict radially averaged periodograms of the various sampling strategies
described in this chapter. These spectra reveal two important characteristics of estimators built
using the corresponding sampling strategies.

Radial mean

For blue noise samplers, this energy free low frequency region becomes larger.
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Fredo Durand [2011]
Pillebuoe et al. [2015]

f(~x)

When we sample a given function f(x), the variance during Monte Carlo integration due to these samples is...
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... proportional to the product of the integrand power spectrum and the samples' expected power spectrum.
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For samples with [CLICK] isotropic power spectra, [CLICK] that is having same energy distribution for a given radial distribution, the corresponding variance expression 
can be simplified to...



Variance in terms of power spectra

!36

Var(IN ) / ⇥

Fredo Durand [2011]
Pillebuoe et al. [2015]

Samples' expected  
power spectrum

Integrand 
power spectrum

For samples with [CLICK] isotropic power spectra, [CLICK] that is having same energy distribution for a given radial distribution, the corresponding variance expression 
can be simplified to...



Variance in terms of power spectra

!36

Var(IN ) / ⇥

Fredo Durand [2011]
Pillebuoe et al. [2015]

Samples' expected  
power spectrum

Integrand 
power spectrum

For samples with [CLICK] isotropic power spectra, [CLICK] that is having same energy distribution for a given radial distribution, the corresponding variance expression 
can be simplified to...



Variance in terms of power spectra

!37

Var(IN ) / ⇥

Fredo Durand [2011]
Pillebuoe et al. [2015]

Samples' expected  
power spectrum

Integrand 
power spectrum

For samples with [CLICK] isotropic power spectra, [CLICK] that is having same energy distribution for a given radial distribution, the corresponding variance expression 
can be simplified to...



Variance in terms of power spectra

!38

Var(IN ) / ⇥

Pillebuoe et al. [2015]

Samples' expected  
power spectrum

Integrand 
power spectrum

     

...the radial counterpart. By taking the radial average of the corresponding integrand spectrum...
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...the correponding variance can be represented as function of these 1D radial profiles.
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We used these radial profiles [CLICK] to derive convergence rates for different sampling patterns. 

The surprising result noted here is the convergence behavior of Poisson disk which belongs to the blue noise class with jittered samples, which has much better 
convergence.
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We used these radial profiles [CLICK] to derive convergence rates for different sampling patterns. 

The surprising result noted here is the convergence behavior of Poisson disk which belongs to the blue noise class with jittered samples, which has much better 
convergence.
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This can be explained by [CLICK] looking at the low-frequency region of these radial profiles. 

[CLICK] For jittered samples, the radial profiles goes to zero near the DC (zero) frequency, whereas for Poisson disk samples the radial profile has an offset, which 
translates into it's bad convergence.
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These convergence tools were developed for samplers with [CLICK] isotropic power spectra. However, the samplers used in practice have anisotropic energy distribution 
in their power spectrum. For example, ...
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These convergence tools were developed for samplers with [CLICK] isotropic power spectra. However, the samplers used in practice have anisotropic energy distribution 
in their power spectrum. For example, ...
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These convergence tools were developed for samplers with [CLICK] isotropic power spectra. However, the samplers used in practice have anisotropic energy distribution 
in their power spectrum. For example, ...
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Latin Hypercube Sampler (N-rooks)

Slide after Wojciech Jarosz

…a Latin hypercube sampler, that is constructed by first generating samples along a diagonal followed by randomly shuffling along the rows and then along the columns.
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Latin Hypercube Sampler (N-rooks)

Slide after Wojciech Jarosz

…a Latin hypercube sampler, that is constructed by first generating samples along a diagonal followed by randomly shuffling along the rows and then along the columns.
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Initialize

Latin Hypercube Sampler (N-rooks)

Slide after Wojciech Jarosz

…a Latin hypercube sampler, that is constructed by first generating samples along a diagonal followed by randomly shuffling along the rows and then along the columns.
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Shuffle rows

Latin Hypercube Sampler (N-rooks)

Slide after Wojciech Jarosz

…a Latin hypercube sampler, that is constructed by first generating samples along a diagonal followed by randomly shuffling along the rows and then along the columns.



 45

Shuffle rows

Latin Hypercube Sampler (N-rooks)

Slide after Wojciech Jarosz

…a Latin hypercube sampler, that is constructed by first generating samples along a diagonal followed by randomly shuffling along the rows and then along the columns.
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Latin Hypercube Sampler (N-rooks)

Slide after Wojciech Jarosz

…a Latin hypercube sampler, that is constructed by first generating samples along a diagonal followed by randomly shuffling along the rows and then along the columns.
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Shuffle columns

Latin Hypercube Sampler (N-rooks)

Slide after Wojciech Jarosz
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Shuffle columns

Latin Hypercube Sampler (N-rooks)

Slide after Wojciech Jarosz
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Latin Hypercube Sampler (N-rooks)

Slide after Wojciech Jarosz
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Latin Hypercube Sampler (N-rooks)

Slide after Wojciech Jarosz

As a result, the underlying power spectrum has an...
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Anisotropic Sampling Power Spectra

N-rooks / 
Latin Hypercube

N-rooks  
Spectrum

… anisotropic power spectrum with hairline structures visible as a dark cross in the middle.  These hairline anisotropies are there due to the denser stratification along the 
X…
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N-rooks / 
Latin Hypercube Spectrum

Anisotropic Sampling Power Spectra

… anisotropic power spectrum with a dark cross in the middle.  These hairline anisotropies are there due to the denser stratification along the X…
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N-rooks / 
Latin Hypercube

N-rooks  
Spectrum

Anisotropic Sampling Power Spectra

…and the Y-axis. It is also possible to directly obtain good 2D stratified samples…
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N-rooks / 
Latin Hypercube JitterN-rooks  

Spectrum

Anisotropic Sampling Power Spectra

…which has a power spectrum [CLICK] with a dark region around the center. Chiu and colleagues, found a better construction for these samples…
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Latin Hypercube JitterN-rooks  
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Jitter 

Spectrum

Anisotropic Sampling Power Spectra

…which has a power spectrum [CLICK] with a dark region around the center. Chiu and colleagues, found a better construction for these samples…
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N-rooks / 
Latin Hypercube Multi-JitterN-rooks  

Spectrum
Multi-Jitter 
Spectrum

Anisotropic Sampling Power Spectra

Chiu et al. [1993]

…to obtain denser stratification…
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Chiu et al. [1993]

…along the horizontal…



 56

N-rooks / 
Latin Hypercube Multi-jitterN-rooks  

Spectrum

Anisotropic Sampling Power Spectra

Multi-Jitter 
Spectrum

Chiu et al. [1993]

…and vertical axis, on top of 2D stratification, which results in multi-jittered samples with a hairline anisotropy along the canonical axes that is visible as a cross in the 
middle of it’s spectrum. The same ideas extend to…
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…to higher dimensions. For example, in 4D…
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Rob Cook [1986]

X
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U

V

4D Sampling

…instead of directly sampling the full 4D space, Rob Cook in [1986] proposed to sample [CLICK] the lower 2D subspaces first, UV and XY here, and then randomly 
permute these 2D samples to form [CLICK] 4D tuples, which can then be used to evaluate an underlying 4D integrand. In practice…
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permute these 2D samples to form [CLICK] 4D tuples, which can then be used to evaluate an underlying 4D integrand. In practice…
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…instead of directly sampling the full 4D space, Rob Cook in [1986] proposed to sample [CLICK] the lower 2D subspaces first, UV and XY here, and then randomly 
permute these 2D samples to form [CLICK] 4D tuples, which can then be used to evaluate an underlying 4D integrand. In practice…
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4D Sampling

…rendering systems tend to use jittered samples on these 2D subspaces. It is, however, beneficial to use more sophisticated samplers like Poisson disk which are more 
uniform. If we look at the power spectra for these underlying 2D projections…
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…rendering systems tend to use jittered samples on these 2D subspaces. It is, however, beneficial to use more sophisticated samplers like Poisson disk which are more 
uniform. If we look at the power spectra for these underlying 2D projections…
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…they are [CLICK] isotropic in nature. However, if look at the mixed 2D projections XU...
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…they are [CLICK] isotropic in nature. However, if look at the mixed 2D projections XU...
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... it has hairline anisotropy along the [CLICK] axes. [CLICK] The same is true for YV projections.
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... it has hairline anisotropy along the [CLICK] axes. [CLICK] The same is true for YV projections.
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Let's look at the power spectrum of an N-rooks expected power spectrum to understand the effect of these anisotropic structures on the variance convergence rate.
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Power Spectrum Radial Power Spectrum

Convergence Analysis for Anisotropic Sampling Spectra

N-rooks expected spectrum has [CLICK] the same radial profile along the canonical axes, and [CLICK] a constant radial profile along all other directions. For the 
convergence rate, we only need…
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Convergence Analysis for Anisotropic Sampling Spectra
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… one of the canonical direction (shown in orange) and one of the direction from the rest of the spectrum (shown in green) since the behavior is the same in all other 
directions. Now, depending on the integrands we can observe different convergence rates for the same sampler. For example,…
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xVar(IN ) =

PSN (⌫)h i Pf (⌫)

N-rooks spectrum Integrand spectrum

Variance due to N-rooks Sampler
f(~x)

X

⌦

...for a step function with all the energy in the spectrum along the horizontal direction. Due to the dark hairline anisotropy [CLICK] present in the sampling spectrum, their 
[CLICK] product goes down very quickly, resulting in huge variance reduction and good asymptotic convergence. However, for the second pixel…
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… since the integrand spectrum has energy spread over all the directions,  the [CLICK] hairline anisotropy of the sampling spectrum [CLICK] does not significantly reduce 
the product, resulting in higher variance. We further verified this..
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… since the integrand spectrum has energy spread over all the directions,  the [CLICK] hairline anisotropy of the sampling spectrum [CLICK] does not significantly reduce 
the product, resulting in higher variance. We further verified this..
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… since the integrand spectrum has energy spread over all the directions,  the [CLICK] hairline anisotropy of the sampling spectrum [CLICK] does not significantly reduce 
the product, resulting in higher variance. We further verified this..
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O(N�1)
O(N�2)

Pixel B

Variance Convergence of Latin Hypercube (N-rooks) 

Pixel A

Pf (⌫)PSN (⌫)h i

…experimentally, where we plot variance with increasing sample count. This shows that if we can align the anisotropic structures of the sampling spectrum Ps with that 
of the integrand spectrum Pf, we can gain huge variance reductions, as shown with the magenta curve. But in most scenarios…
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…experimentally, where we plot variance with increasing sample count. This shows that if we can align the anisotropic structures of the sampling spectrum Ps with that 
of the integrand spectrum Pf, we can gain huge variance reductions, as shown with the magenta curve. But in most scenarios…
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Non-Axis Aligned Integrand Spectra

Pf (⌫)

Integrand Spectrum

…the underlying integrand spectrum has arbitrary orientation. If we choose to sample this function…
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Multi-jittered Samples

Non-Axis Aligned Integrand Spectra

Pf (⌫)

Integrand Spectrum

…with multi-jittered samples which has [CLICK] the following power spectrum, we won’t be able to benefit from these hairline anisotropic structures since they are axis-
aligned. To solve this issue, we propose to shear…
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Multi-jittered Samples

Non-Axis Aligned Integrand Spectra

Pf (⌫)PSN (⌫)h i

Sampling Spectrum Integrand Spectrum

…with multi-jittered samples which has [CLICK] the following power spectrum, we won’t be able to benefit from these hairline anisotropic structures since they are axis-
aligned. To solve this issue, we propose to shear…
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Shearing Multi-Jittered Samples
Pf (⌫)

Sheared Samples Sheared Spectrum Integrand Spectrum

PSN (⌫)h i

Singh and Jarosz [SIGGRAPH 2017]

…the samples in such a way that we can align the sampling spectrum with that of the integrand spectrum. Now, to show the improvements due to shearing, lets look at a 
rendering example.
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Variance Heatmap

We visualize the variance heatmap; For this, we  render the same cornellbox scene [CLICK] multiple times generating 100 images with uncorrelated-multijittered samples 
followed by computing the variance of each pixel over these 100 images. The resulting variance heatmap [CLICK] is shown as a gray scale image where the brighter 
pixels means high variance. After shearing the samples in the XU and YV subspaces…



 72
U

nc
or

re
la

te
d 

M
ul

ti-
jit

te
re

d

Multiple images

…

Variance Heatmap

We visualize the variance heatmap; For this, we  render the same cornellbox scene [CLICK] multiple times generating 100 images with uncorrelated-multijittered samples 
followed by computing the variance of each pixel over these 100 images. The resulting variance heatmap [CLICK] is shown as a gray scale image where the brighter 
pixels means high variance. After shearing the samples in the XU and YV subspaces…
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Multiple images

…

With Original Samples
Variance Heatmap

We visualize the variance heatmap; For this, we  render the same cornellbox scene [CLICK] multiple times generating 100 images with uncorrelated-multijittered samples 
followed by computing the variance of each pixel over these 100 images. The resulting variance heatmap [CLICK] is shown as a gray scale image where the brighter 
pixels means high variance. After shearing the samples in the XU and YV subspaces…
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With Sheared SamplesWith Original Samples
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Variance Heatmap

…we observe dramatic variance reduction in pixels with no occluders and modest improvement at pixels with discontinuities. The problem here is that improvements 
come after a really large N. The major reason for this limited improvement is that existing samplers have only hairline anisotropic structures.. 



Blue noise samplers can have better convergence compared to stratified samples 

Denser stratification can lead to anisotropic spectra which improves convergence  
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So far...
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Progressivity 

High speed (millions of samples per second) 

Extension to dimensions beyond 2D  
(Spoke dart throwing, Mitchell [2018]) 

�75

What properties we desire in a sampler?

(Ahmed et al. [2017], Christensen et al. [2018])

progressivenon-progressive



Low-Discrepancy Sampling

Deterministic sets of points specially crafted to be evenly 
distributed (have low discrepancy). 

Entire field of study called Quasi-Monte Carlo (QMC)
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The Van der Corput Sequence

Radical Inverse Φb in base 2 
Subsequent points “fall into 
biggest holes”

�77

k Base 2 Φb
1 1 .1 = 1/2

2 10 .01 = 1/4

3 11 .11 = 3/4

4 100 .001 = 1/8

5 101 .101 = 5/8

6 110 .011 = 3/8

7 111 .111 = 7/8

...

best discrepancy for infinite sequence
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Halton: Radical inverse with different base for each dimension:

- The bases should all be relatively prime.
- Incremental/progressive generation of samples

Hammersley: Same as Halton, but first dimension is k/N:

- Not incremental, need to know sample count, N, in advance

~xk = (�2(k),�3(k),�5(k), . . . ,�pn(k))

~xk = (k/N,�2(k),�3(k),�5(k), . . . ,�pn(k))

Halton and Hammersley Points

�78



The Hammersley Sequence
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1 sample in each “elementary interval”
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The Hammersley Sequence
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1 sample in each “elementary interval”



Why do we need to scramble?
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Halton Projection (29, 31)

These deterministic samplers can have voids in the domain when the sample count is not exactly dyadic. 

[CLICK] We can scramble these samples to fill the domain. Let's see some rendering results.
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Halton Projection (29, 31) Scrambled Halton Projection (29, 31)

These deterministic samplers can have voids in the domain when the sample count is not exactly dyadic. 

[CLICK] We can scramble these samples to fill the domain. Let's see some rendering results.



Scrambled Low-Discrepancy Sampling
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Low discrepancy samplers show less noise compared to randomly jittered samples. 



Monte Carlo (16 jittered samples)
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Can we combine blue noise properties with low discrepancy? 
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Low-Discrepancy Blue Noise

�89
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Recently, couple of papers were published that incorporate certain stratification properties to different blue noise targets resulting in lowering their discrepancy 
properties.
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Recently, couple of papers were published that incorporate certain stratification properties to different blue noise targets resulting in lowering their discrepancy 
properties.
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Ahmed et al. [2016]

The plots are shown where the discrepancy is comparable to Sobol.
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The corresponding variance convergence is also comparable.



Low-Discrepancy Blue Noise 2D-Projections
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Sobol Special scrambling Blue noise characteristics

Perrier et al. [2018]

Perrier and colleagues took a step further and developed a smart scrambling strategy that introduces blue noise properties directly into the well known sobol 
sequences.



Low-Discrepancy Blue Noise 2D-Projections
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Sobol Special scrambling Blue noise characteristics

Perrier et al. [2018]

Perrier and colleagues took a step further and developed a smart scrambling strategy that introduces blue noise properties directly into the well known sobol 
sequences.



Low-Discrepancy Blue Noise 2D-Projections
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Sobol Special scrambling Blue noise characteristics

Perrier et al. [2018]

Perrier and colleagues took a step further and developed a smart scrambling strategy that introduces blue noise properties directly into the well known sobol 
sequences.



Low-Discrepancy Blue Noise 2D Sobol Projections
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Perrier et al. [2018]

This also shows improvements in rendering quality near the edges of the scene.
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Blue noise sampling  
and beyond

Stochastic samplers

QMC samplers

Stratification strategies

In the end, we now briefly touch upon correlated importance sampling which is recently published at CGF and we are hoping to present it at EGSR this year.
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Blue noise sampling  
and beyond

Importance sampling

with correlated samples
Stochastic samplers

QMC samplers

Stratification strategies

In the end, we now briefly touch upon correlated importance sampling which is recently published at CGF and we are hoping to present it at EGSR this year.



Light IS vs BSDF IS
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Light Importance Sampling BSDF Importance Sampling

Singh et al. [2019]

Two common importance sampling (IS):  
light IS: generate samples on the light source and generate shadow rays to the hit point. This results in a smooth looking underlying integrand at that hit point.  
BSDF IS: When the visible hemisphere is sampled, the samples see the light source boundary as a discontinuity, making the underlying integrand C_0 discontinuous. 



Scene illuminated by area direct lighting
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Reference Underlying  
pixel functions

Singh et al. [2019]

Light IS BSDF IS

This directly reflected into the corresponding convergence rates. We focus on two pixels: Pixel P (the hit point is directly visible from the light source) and Pixel Q 
(partially occluded from the light source).  
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Reference Underlying  
pixel functions Pixel P

Unoccluded pixels' convergence benefit from Light IS 

Singh et al. [2019]

Light IS BSDF IS

 light IS for unoccluded hit points (Pixel P with no occluders) shows good convergence rate compared to partially occluded hit points. BSDF IS however does not 
improve any convergence behavior irrespective of whether the hit point is occluded or not. 
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pixel functions Pixel P Pixel Q

Occluded pixels (no improvement in convergence)
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More at EGSR ;)
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Futuristic sampling target spectrum
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Future design

Singh and Jarosz [2017]

Multi-jittered

Future directions:  
Might be interesting to generate samples with correlations that can have wider anisotropic structures. 
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Direct link between spatial and Fourier statistics needs further investigation  

Progressive samplers in higher dimensions  

Adapting sample correlations w.r.t. the underlying integrand in high dimensions 

Future research directions
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