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Fig. 1. Given an integrand (a), we first sample (b) f (x ) as in Monte Carlo (MC) integration. (c-d) Traditional MC estimator can be interpreted as fitting

a constant model function to the sample values, with the integral of this constant function equals to F . (e) We, instead, propose to use a non-constant
model function such as a polynomial, which is then fitted to the sampled values. (f) The resulting estimator is based on control variates; we add the

analytical integral of the model function to MC integration of the difference between the original integrand and the model function. The bottom row

shows renderings and the corresponding error images to demonstrate the impact of our regression approach against the traditional MC integration.

The insets on the right compare our method with different orders (Ox) of polynomials. Our method has significant error reduction at equal time.

Monte Carlo integration is typically interpreted as an estimator of the

expected value using stochastic samples. There exists an alternative

interpretation in calculus where Monte Carlo integration can be seen as

estimating a constant function—from the stochastic evaluations of the

integrand—that integrates to the original integral. The integral mean

value theorem states that this constant function should be the mean

(or expectation) of the integrand. Since both interpretations result in

the same estimator, little attention has been devoted to the calculus-

oriented interpretation.We show that the calculus-oriented interpretation
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actually implies the possibility of using a more complex function than

a constant one to construct a more efficient estimator for Monte Carlo

integration. We build a new estimator based on this interpretation and

relate our estimator to control variates with least-squares regression on

the stochastic samples of the integrand. Unlike prior work, our resulting

estimator is provably better than or equal to the conventionalMonte Carlo

estimator. To demonstrate the strength of our approach, we introduce

a practical estimator that can act as a simple drop-in replacement for

conventional Monte Carlo integration. We experimentally validate our

framework on various light transport integrals. The code is available at

https://github.com/iribis/regressionmc.
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1 INTRODUCTION

Monte Carlo (MC) integration is a basic tool for many numerical

integration problems. In textbooks, MC integration is typically
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interpreted as a statistical process where it samples the integrand

and estimates the expected value by taking the average of these

samples. While less common, there is another interpretation of

MC integration based on the mean value theorem in calculus.

The mean value theorem for definite integrals tells us that there

exists a constant that integrates exactly to the same solution as

the given definite integral (see Fig. 1). This constant, by defini-

tion, is equal to the mean of the integrand, which can be again

estimated by taking the average of random samples, and thus

both interpretations result in the same estimator. This alternative

interpretation, however, raises interesting questions: Can we use
a non-constant function to construct a MC estimator? If so, what
happens? These questions do not appear in the statistics-oriented

interpretation as the expected value is fundamentally tied to the

idea of samples’ average.

We propose a new MC estimator that takes the same input

as MC integration (see Fig. 1b) with no extra assumptions. In-

stead of merely taking the average to find a constant function

(Fig. 1c), we propose to fit a non-constant model function (Fig. 1e)

to the samples via least-squares regression and utilize its analyt-

ical integral to define an estimator (Fig. 1f). We show that our

approach can be formulated as the method of control variates,

where control variates are obtained via least-squares regression.

While the use of regression in control variates is not new, we

show, for the first time how regression, control variates, and

MC integration are closely coupled. MC integration is a special

case under our formulation where a constant function is the

solution of regression. Our approach is provably shown to be

better than or equivalent to MC integration; in the worst case,

it will revert back to conventional MC integration as long as

a constant function is included in regression. This theoretical

guarantee has not been explored in prior work on regression-

based control variates. To summarize our contributions:

• We introduce a novel formulation of MC integration which

connects least-squares regression, control variates, and

conventional MC integration.

• We prove that our regression-based formulation leads to a

class of estimators that are better than or equal to conven-

tional MC integration in terms of variance.

• We develop a practical algorithm based on our formulation

and polynomials, which can work as drop-in improvement

over conventional MC integration.

• We demonstrate the effectiveness of our algorithms over

light transport integral estimations by performing experi-

ments over multiple dimensions (2D to 15D).

2 RELATED WORK

2.1 Numerical integration

Integration is a classical subject in numerical analysis [Davis

2013; Trefethen 2012]. The calculus-oriented approach has lead

to deterministic quadrature techniques such as a Riemann sum.

The quadrature techniques sample the integrand at predeter-

mined points and approximate the given integrand using an

analytically integrable function (e.g., quadrangles, trapezoids,

and certain basis functions). The calculus-oriented approach, in

general, suffers from the exponential growth of the number of

samples for higher dimensional functions. A statistics-oriented

approach, MC integration, performs a similar summation but

instead evaluates the integrand at stochastically sampled loca-

tions. This stochastic nature of sample generation extends well

to higher dimensions [Niederreiter 1992; Owen 2013] without

the exponential growth of the number of samples, which has led

to its wide adoption in the rendering community. We take a step

back from this trend and show how a calculus-oriented refor-

mulation of MC integration can lead to more efficient numerical

integration methods.

2.2 Control variates

Control variates (CVs) [Glynn and Szechtman 2002; Loh 1995] are

variance reduction techniqueswhich utilizeMC integration of the

difference between a given integrand f and another function д to
perform numerical integration. This difference estimate is added

to the analytical integral of the function д to estimate the integral

of f . The improvement over conventional MC integration is

dependent on how well д approximates f , and the improvement

is not guaranteed in general.

Owen and Zhou [2000] discussed a practical approach to per-

form importance sampling with control variates for variance

reduction. They showed that adaptive control variates using a

mixture density cannot be much worse (i. e., can only be slightly

worse) than conventional MC using the best mixture component.

Our approach, on the other hand, is provably never worse than
conventional MC using the same PDF (shown in Section 4.3 and

Equation (25)). Fan et al. [2006] used the method of Owen and

Zhou in rendering with an additional approximation.

Multi-level Monte Carlo [Heinrich 2001; Keller 2001] shows

how low resolution renderings can be used as CVs for high-

resolution synthesis. Rousselle et al. [2016] shows a connection

between CVs and the reconstruction step in gradient-domain

rendering [Hua et al. 2019]. Recently, Kondapaneni et al. [2019]

showed a connection between weights in multiple importance

sampling [Veach and Guibas 1995] and CVs. We show connec-

tions among control variates, least-squares regression, and MC

integration to have a provable variance reduction. We will dis-

cuss more related work [Crespo et al. 2021; Hickernell et al. 2005;

Nakatsukasa 2018; Owen and Zhou 2000; Pajot et al. 2014; Rubin-

stein and Marcus 1985] later once we introduced our approach.

Construction of control variates in rendering. Constructing con-
trol variates for complex integrands in light transport simulation

is a challenging task. In rendering, the simplest form of control

variate uses the constant ambient term to approximate incom-

ing illumination [Lafortune and Willems 1994]. This, however,

does not work well in complex lighting conditions. Clarberg and

Akenine-Möller [2008] used visibility correlations to design con-

trol variates for direct illumination. Vévoda et al. [2018] used

bayesian regression to construct a light clustering. For further

improvement, a control variate function is derived from the re-

spective estimated contribution of each cluster at any shading

point. Kutz et al. [2017] proposed a method of control variate

extension for heterogenous participating media rendering. It is

based on the decomposition of the medium into a control and a

residual components. These two parts can be sampled separately.

The control variate has also been used by Belcour et al. [2018]

to extend their method of integration of spherical harmonic ex-

pansions over polygonal domains to non-analytic integrands.

Neural control variates [Müller et al. 2020] fit a neural network

to define control variates. They also proposed to simultaneously

train another network to importance sample the difference func-

tion. The resulting estimator shows remarkable improvements,

but with a significant computational overhead and changes to

the sampling process that have to be accelerated by utilizing a

high-performance multi-GPU workstation. Recently, Subr [2021]
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propose a neural network Q-NET that uses a neural proxy as a

control variate. Our control variates are constructed from the

samples within each pixel using least squares regression.

The expected improvement from these control variates is lim-

ited by construction due to the lack of complexity captured by

these control variates. It is thus reasonable to assume that control

variates usually do not approximate the integrand well in light

transport simulation. Recognizing this limitation, our approach

is designed to be provably better than MC integration as long as

least-squares regression can find any non-constant solution. A

major deviation from prior work is that we show how regression

is closely connected to control variates andMC integration. Many

prior work on control variates instead focus on introducing a

sophisticated model function for control variates. This concep-

tual difference allows us to realize that we can use a significantly
simpler model function, such as polynomials, and still provably

outperforms MC integration. We demonstrate that our estima-

tors are already practical without any special optimization for

regression (e.g., use of high performance hardware like GPUs)

and without any change to the sampling process.

2.3 Regression in rendering

Regression has been applied for adaptive sampling and recon-

struction in rendering [Zwicker et al. 2015]. Moon et al. [2014]

proposed to locally approximate the unknown image function by

locally regressing a low-order polynomial on auxiliary buffers

(normals, depth, textures). To alleviate the computational over-

head of the method, Moon et al. [2015] used a iterative linear

model to simultaneously reconstruct multiple pixels. These meth-

ods control the filtering bandwidths locally to increase numerical

accuracy. Bitterli et al. [2016] analyze various zero-order and

first-order regression models and use auxiliary data just to fit the

data and considers only the pixel color to compute the regression

weights. Our framework is largely agnostic to how regression is

implemented, and we demonstrate multiple implementations as

examples. The regression part of our framework can thus utilize

findings in those previous.

3 TWO INTERPRETATIONS OF MC INTEGRATION

Let us motivate our main question by recapitulating the two

different interpretations of MC integration. Suppose that we

want to find a definite integral F of a non-negative function f (x)
over the domain Ω where

F =

∫
Ω
f (x)dx . (1)

In many practical problems, it is difficult to find the analytical

solution to the above. In light transport simulation, the function

f (x) is defined as the measurement contribution function for

a light transport path x [Veach 1997]. The definite integral in

this case is the solution to light transport simulation, which is

generally unavailable in an analytical form.

Rather than trying to find an analytical solution, MC integra-

tion uses a numerical estimator ⟨F ⟩ where

F ≈ ⟨F ⟩ =
1

N

N∑
i=1

f (xi )

p(xi )
. (2)

The variables xi are N independent random samples distributed

according to the probability density function p(x) which satisfies

p(x) , 0 whenever f (x) , 0 in the domain Ω. This estimator

⟨F ⟩ is said to be unbiased in the sense that its expected value is

exactly equal to the integral F :

E [⟨F ⟩] =
1

N

N∑
i=1

E

[
f (xi )

p(xi )

]
=

1

N

N∑
i=1

∫
Ω

f (x)

p(x)
p(x)dx = F . (3)

Change of variables. The same estimator can also be redefined

in a unit hypercube U of uniformly distributed random numbers

ui that are used for generating samples xi . Suppose that we have
a mapping x = Φ(u) where the Jacobian |dx/du | = 1/p(x). By
change of variables, we can rewrite the integral into

F =

∫
Ω
f (x)dx =

∫
U

f (Φ(u))

����dx
du

���� du = ∫
U

ˆf (u)du, (4)

where
ˆf (u) =

f (Φ(u))
p(Φ(u)) , and rewrite the estimator ⟨F ⟩ into

F ≈ ⟨F ⟩ =
1

N

N∑
i=1

ˆf (ui )

p(ui )
=

1

N

N∑
i=1

ˆf (ui ). (5)

In otherwords, by properly redefining the integrand as above, one

can always consider having uniformly distributed samples ui ∼
p(u) = 1 in this unit hypercube U , instead of samples xi ∼ p(x)
in the domain Ω which are generally not uniformly distributed.

This definition is known as as primary sample space [Kelemen

et al. 2002] in rendering. We use this formulation in the rest of

the paper. One can generally convert Equation 1 to Equation 4

as long as change of variables from x to u is possible.

3.1 Statistic-oriented interpretation

The process of MC integration can be seen as an estimation of

the expected value of
ˆf (u) since we have

F =

∫
U

ˆf (u)p(u)du = E

[
ˆf (u)

]
≈

1

N

N∑
i=1

ˆf (ui ) = ⟨F ⟩ (6)

where u is distributed according to p(u) = 1. Under this interpre-

tation, one can also derive an expression of the expected squared

errors of ⟨F ⟩ as

E

[
(⟨F ⟩ − F )2

]
= Var [⟨F ⟩] =

1

N
Var

[
ˆf (u)

]
(7)

where we used the unbiasedness of the estimator E [⟨F ⟩] = F . It
is a well known expression that shows that the expected squared

error of MC integration is proportional to the variance of
ˆf (u)

and inversely proportional to the number of samples N .

3.2 Calculus-oriented interpretation

One can also interpret MC integration as a two-step process;

replacement of the integrand ˆf by a model function д̂ and suc-

ceeding analytical integration of д̂. Let us consider a constant
function д̂(u) = c as the model function. To keep its integral G
equal to the original integral F , we would like to find a value for

c such that

F =

∫
U

ˆf (u)du =

∫
U
д̂(u)du = G . (8)

The integral mean value theorem in calculus shows that there

exist such a constant c for a given definite integral. Since the

function д̂(u) can be analytically integrated, we have

F = G =

∫
U
д̂(u)du = c |U | ∴ c =

1

|U |

∫
U
д̂(u)du (9)

where |U | = 1 is the volume of the unit hypercubeU . Therefore,

the constant c can be derived as the average of ˆf (u) since

c =
1

|U |

∫
U
д̂(u)du =

1

|U |

∫
U

ˆf (u)du (10)
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where the last expression is the definition of the average of
ˆf (u)

over the unit hypercubeU . Note that there is no approximation

introduced until this point. Since c is defined as the average of

ˆf (u), we can estimate c by taking the average of samples;

c ≈
1

N

N∑
i=1

ˆf (ui ) = ⟨F ⟩. (11)

This interpretation thus leads to the same estimator as the statistic-

oriented interpretation since

F =

∫
U
д̂(u)du =

∫
U
cdu ≈

∫
U

(
⟨F ⟩

|U |

)
du = ⟨F ⟩. (12)

Under this interpretation, MC integration can be seen as the pro-

cess of first estimating a function д̂(u) = c , and then analytically

integrating (the approximation of) the function д̂(u).

3.3 Problem statement

One might see that the calculus-oriented interpretation is rather

redundant at first, since the end result is the same. However,

this interpretation actually points out the existence of д̂ in the

definition of the estimator, and also the fact that MC integration

is derived by using a constant function д̂ = c . This existence of д̂
is not apparent in the statistics-oriented interpretation.

Our main question is whether making д̂ non-constant is possi-
ble and whether it is beneficial to consider such д̂ to begin with.

We show that such a д̂ can be defined based on control variates
and least-squares regression of д̂ to

ˆf . Our formulation shows that

conventional MC integration is a special case where regression

happens to return a constant function for д̂. We also show that

considering a more complex д̂ is provably better than or equal to

simply having a constant д̂ in terms of its expected error.

4 REGRESSION-BASED MC INTEGRATION

We introduce a novel formulation of MC integration, regression-
basedMC integration, which allows us to consider any analytically
integrable functions for д̂, in place of the constant function. Fig. 1

illustrates our approach for a 1D function.

We start by considering an arbitrarymodel function д̂(u)which
can be analytically integrated. Unlike the calculus-oriented inter-

pretation, our function д̂(u) can be non-constant and the integral

G does not need to be equal to the original integral F . We can use

such д̂(u) by adding the difference from the original integral as

F = G + (F −G) (13)

where (F −G) is estimated by MC integration;

F −G ≈
1

N

N∑
i=1

(
ˆf (ui ) − д̂(ui )

)
= ⟨D⟩. (14)

The final estimator is defined as a sum of two terms where

F ≈ ⟨F ⟩∗ = G + ⟨D⟩. (15)

The first term G is analytically evaluated for this given д̂(u) in a

deterministic manner. This estimator is not new and is known

as the method of control variates. The function д̂(u) is called the

control variate which is typically given by a user. In our method,

we find д̂(u) by (least-squares) regression.
Control variates are unbiased regardless of д̂(u). Since G is

deterministic, the expected squared error of ⟨F ⟩∗ is given by the

difference estimator

E

[ (
⟨F ⟩∗ − F

)
2

]
= Var [⟨D⟩] =

1

N
Var

[
ˆf (u) − д̂(u)

]
. (16)

Control variates thus lead to a smaller expected square error

compared to conventional MC integration only when Var[ ˆf (u) −

д̂(u)] < Var[ ˆf (u)]. Error reduction is thus not guaranteed and it

is widely recognized so [Hickernell et al. 2005].

Our key contribution is to show that least-squares regression

not only helps us automatically finding д̂(u) but also provably
reduces the expected squared error when a constant function is
included in regression. As we discuss later, a constant function has

been usually ignored in (adaptive) control variates. Our work is

the first to show that this combination of the least-square regres-

sion and inclusion of a constant function results in the provable

improvement with a proper reduction to MC integration.

Fig. 2 showcases our method for simple 1D integration prob-

lems. The labels O1, O3, and O5 in our method mean different

orders of polynomials used for д̂ as we explain later. The con-

vergence plots show that, after a certain number of samples, our

method is no worse than MC integration regardless of the order

of polynomials. It is also worth noting that regression might not
well approximate the integrand (e.g., step and complex cases).

The method of control variates alone with such a bad approxi-

mation could increase the error. Even in such cases, our method

still outperforms MC integration once regression converges after

some numbers of samples. When the integrand can be modeled

exactly by д̂, as shown in the last row where the integrand is a

5th-order polynomial, our method dramatically reduces numeri-

cal error compared to MC integration. We now explain how our

estimator ⟨F ⟩∗ achieves this reduction of errors by showing its

connections to control variates and MC integration.

4.1 Least-squares regression of д̂(u)

We model д̂(u,θ ) as a parametric function with the parameters

θ = (c0, · · · , cM ). We define the residual for θ as

R(θ ) =

∫
U

(
ˆf (u) − д̂(u,θ )

)
2

du . (17)

Let us then consider regression of д̂(u) to ˆf (u) such that the resid-
ual R(θ ) is minimized. Since analytical solution to the integral in

R(θ ) is usually not available, we first consider using N random

samples ui to approximate R(θ )

R(θ ) ≈
1

N

N∑
i=1

(
ˆf (ui ) − д̂(ui ,θ )

)
2

= ⟨R⟩(θ ), (18)

which is equivalent to MC integration of the function ( ˆf (u) −
д̂(u,θ ))2 using the estimator ⟨R⟩(θ ). This unbiased approximation

thus converges to R(θ ) as we increase the number of samples.

This expression of ⟨R⟩(θ ) can also be seen as the squaredL2 norm

of the differences between
ˆf (ui ) and д̂(ui ,θ ) on the samples ui .

The solution to this regression can be obtained via least-squares
regression of д̂(u,θ ) to N pairs of (ui , ˆf (ui )).

4.2 Connection to control variates

The original definition of control variates considers a given func-

tion h(u) and a scalar parameter α such that

F =

∫
U

ˆf (u)du = αH +

∫
U
( ˆf (u) − αh(u))du (19)

where H =
∫
U h(u)du. Given this definition, it is known that

α = Cov

[
ˆf ,h

]
/Var [h] (20)

minimizes the variance of ⟨F ⟩∗. This approach can be seen as a

special case of our formulation where θ = α and д̂(u,θ ) = αh(u).
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Fig. 2. Regression-based Monte Carlo integration in 1D: a step function, a shifted Gaussian, a high-frequency function, and a polynomial. Our method

is no worse than MC integration. It is not required that the model function well approximates the integrand for our method to work (e.g., the step

function and high-frequency function case where our model function is very different from the integrand). When the model function is a good fit (e.g.,

the shifted Gaussian, polynomial function case), the error can be reduced dramatically.

Let us analyze the error of ⟨F ⟩∗ when д̂(u,θ ) is given by least-

squares regression. Since the expected squared error of ⟨F ⟩∗ is

equal to the variance of
ˆf − д̂ (Equation (16)), we have

Var

[
ˆf (u) − д̂(u,θ )

]
= E

[(
ˆf (u) − д̂(u,θ )

)
2

]
− E

[
ˆf (u) − д̂(u,θ )

]
2

=

∫
U

(
ˆf (u) − д̂(u,θ )

)
2

du − (F −G)2 = R(θ ) − (F −G)2. (21)

where we used the fact that p(u) = 1 in the primary sample space

and substituted R(θ ). The expected squared error of the estimator

is thus bounded as

E

[ (
⟨F ⟩∗ − F

)
2

]
=

1

N

(
R(θ ) − (F −G)2

)
≤

1

N
R(θ ). (22)

We can see that, by defining the control variate д̂(u) via least-
squares regression, one can also minimize (the bound of) the

expected squared error of the estimator. In practice, we cannot

directly minimize R(θ ), but we minimize its estimate ⟨R⟩(θ ), so
this relationship does not exactly hold for regression with a finite

number of samples as one can also see in Fig. 2. Our experiments,

however, show that minimizing ⟨R⟩(θ ) works well in practice

when N is not too small.

Note also that control variates directly minimize the variance

by setting α , while we minimize only its bound by least-squares

regression. While it is tempting to consider more general regres-

sion to directly minimize the variance in our method, it is the

use of least-squares regression which allowed us to reveal clear

connections among least-squares regression, control variates,

and MC integration as we see in the followings.

4.3 Reduction to Monte Carlo integration

It is now trivial to show that our approach reduces to MC inte-

gration when regression happened to return a constant function

д̂(u) = c as its best fit. Substituting д̂(u) = c to Equation (15),

⟨F ⟩∗ = c |U | +
1

N

N∑
i=1

(
ˆf (ui ) − c

)
=

1

N

N∑
i=1

ˆf (ui ) = ⟨F ⟩. (23)

It shows that, when д̂(u) = c is the solution to regression, our

approach reduces to MC integration. In this case, since we have

F = G, the upper-bound in Equation (22) becomes exact and

E

[ (
⟨F ⟩∗ − F

)
2

]
= E

[
(⟨F ⟩ − F )2

]
= R(c) (24)

where R(c) is the residual for д̂(u) = c .
Based on this reduction to Monte Carlo integration, we can

show for the first time that the expected squared error of this

approach is provably better than or equal to MC integration.

Deceivingly simple, but the important difference from prior work

is that we include a constant function in least-squares regression

by adding c to д̂(u) and we minimize the residual R(θ ). This
allows us to have a "safe-guard" against performing worse than

MC integration, when combined with least-squares regression.

SinceR(θ ) is minimized for a model function including a constant,

R(θ ) ≤ R(c). (25)
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It thus follows that

E

[ (
⟨F ⟩∗ − F

)
2

]
≤

1

N
R(θ ) ≤

1

N
R(c) = E

[
(⟨F ⟩ − F )2

]
∴ E

[ (
⟨F ⟩∗ − F

)
2

]
≤ E

[
(⟨F ⟩ − F )2

]
. (26)

The two errors become equal only when R(θ ) = R(c), that is, our
estimator exactly reduces to MC integration when a constant

function is the solution to regression. This inequality also shows

that, when a constant function is not the solution, it will always

lead to a better or equivalent estimator ⟨F ⟩∗ than MC integration

⟨F ⟩. Our estimator is thus provably better than or equal to MC

integration in terms of its expected squared errors.

In practice, since the solution to least-squares regression is

not exact for any finite N , this theoretical property of reduction

of errors is not guaranteed for any finite N . Nonetheless, our

numerical results demonstrate that reduction of error happens

and stabilize well even for a practical range of N .

Discussion. While regression is often used as an approach to

find a control variate, none of the prior work shows how includ-

ing a constant function in regression allows us to unify control

variates and MC integration. For example, a very thorough dis-

cussion on control variates [Hickernell et al. 2005, Section 4]

immediately dismisses a constant control variate as redundant

since it will not reduce variance at all.

Recognizing a problem of control variates that it could perform

worse than MC integration, Pajot et al. [2014] proposed switch-

ing to conventional MC when the estimated variance of adaptive

control variate is determined to be larger. Our approach does

not need this explicit switching, as it is automatically done as a

result of least-squares with theoretical guarantee. Although our

estimator looks similar to a general mixture estimator by Owen

and Zhou [2000], their estimator does not revert back to MC inte-

gration. The difference becomes apparent when we fit a mixture

density including a constant function. When regression returns

a constant as the solution, the method of Owen and Zhou also

changes the sampling density to a constant. On the other hand,

our method reduces to MC integration while keeping the sam-

pling density as the given mixture density. The two estimators

are thus fundamentally different.

Some existing methods [Rousselle et al. 2016; Rubinstein and

Marcus 1985] use multiple different control variate functions

to take advantage of their respective strengths. Rubinstein and

Marcus [1985], in particular, shows that the variance reduction

depends on the optimal number of control variates used in the

estimator. Our work is orthogonal to this work.

5 POLYNOMIAL-BASED ESTIMATORS

While our formulation supports arbitrary integrable functions

for д̂, we elaborate a practical implementation with a polynomial

function for д̂ to demonstrate the strength of our method. In

general, a polynomial function can be written as

д̂(u) =
M∑
q=0

cqϕq (u) (27)

with monomials ϕ defining a polynomial. We can analytically

integrate д̂ as the weighted sum of the integrals of monomials as∫
U
д̂(u)du =

M∑
q=0

cq

∫
U
ϕq (u)du . (28)

Algorithm 1: Direct matrix estimator.

f ← {}; u ← {}; Φ0 ← 0
M×M

; b0 ← 0
M×1

;

for i ← 1 to N do
ui ← random();

fi ← ˆf (ui );

(Φi+1,bi+1) ← update_system(Φi , bi , ui , fi );

end
θ
min
← solve_linear_system(ΦN+1, bN+1);

return G(θ
min
) + 1

N (
∑N
i=1

fi − д̂(ui ,θmin
));

The advantage of polynomials is that it is simple and easily

generalizable for different dimensions with different orders of

polynomials. Note that we do not claim that polynomials are

optimal as control variates. The integrand
ˆf is, in general, far

more complex than a polynomial, and it will not be well approxi-

mated by a polynomial in many cases. Using polynomials in the

conventional control variates might be seen as a bad approach

because of this reason.

What is important here is that a polynomial is still more com-
plex than a constant and includes a constant. Our formulation

thus provably guarantees improvement over MC integration in

this case. Therefore, even with a lower-order polynomial, it is

expected that our method either outperforms or at least performs

equally to MC integration. We explain two different approaches

for regression.

5.1 Direct matrix estimator

It is well known that regression with a polynomial can be for-

mulated as a solution to a linear system. The size of this linear

system is proportional to the number of monomialsM and inde-

pendent from the number of samples N , making it suitable for

MC integration. We can define a linear system by taking partial

derivatives with respects to coefficients and setting all to zero

∂⟨R⟩(θ )

∂cq
= 0 ∀q ∈ {0, 1, . . . ,M} . (29)

Since ⟨R⟩(θ ) is the squared L2 norm of the differences between

ˆf (ui ) and д̂(ui ,θ ), the solution to this system is guaranteed to

give a global minimum of ⟨R⟩(θ ). In a matrix form, this linear

system can be represented as
Φ(0, 0) · · · Φ(0,M)
Φ(1, 0) · · · Φ(1,M)
...

Φ(M, 0) · · · Φ(M,M)




c0

c1

...

cM


=



∑N
i=1

ˆf (ui )ϕ0(ui )∑N
i=1

ˆf (ui )ϕ1(ui )
...∑N

i=1

ˆf (ui )ϕM (ui )


(30)

where the function Φ(·, ·) represents

Φ(p,q) =
N∑
i=1

ϕp (ui )ϕq (ui ) (31)

which is precomputed for given bases ϕ. Updating the full matrix

requiresM2 +M floating point multiplication and summation if

we ignore the cost of evaluating the monomials.

Since we need to evaluate the resulting д̂(u) at each of ui after
regression, we chose to store all the N samples first, solve the

linear system, and then evaluate д̂(ui ) afterward. An iterative

approach which does not require storing all the samples is pos-

sible under the matrix formulation [Nakatsukasa 2018], but we

leave it as future work and use the simpler alternative to store

all the samples. Note also that the size of the matrix stays the
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Fig. 3. Equal-time comparisons between regression-based and conventional Monte Carlo integration. We demonstrate the effectiveness of our approach

with polynomials of order 1 to 3. The rendering involves 3D integrations (Killeroos and Bathroom). relMSE values are scaled by 10
3
.

same regardless of the number of samples N . We use complete

orthogonal decomposition as a solver as it is fast for small matri-

ces and does not require that the matrix is invertible (which may

happen when N is small). Algorithm 1 shows the details of this

matrix-based approach.

5.2 Gradient descent estimator

Since our formulation does not assume a specific approach for

regression, we can use an alternative approach based on gradient

descent. Rather than setting partial derivatives to zero to define

a linear system, we use them as a gradient to iteratively update

θk by starting from its initial guess θ1 and calculating

θk+1
= θk − γ

(
· · · ,

∂⟨R⟩(θk )

∂cq,k
, · · ·

)
(32)

where γ is a parameter which we set to 0.01. Using stochastic
gradient descent, we can modify the above equation by observing

thatui is a random sample used for Monte Carlo estimator ⟨R⟩(θ )
of R(θ ) and use only one sample for k = 1, · · · ,N as

θk+1
= θk − γ

(
· · · ,

∂r (uk ,θk )

∂cq,k
. · · ·

)
. (33)

where we defined r (u,θ ) = ( ˆf (u) − д̂(u,θ ))2 for simplicity. This

process can be repeated multiple times over the same set of

samples to potentially reach a better solution for regression.

This gradient descent approach is quite general and can be used

for more complex integrable functions than polynomials such as

neural networks [Müller et al. 2020]. In the case of polynomials,

the computation of gradients is straightforward and only requires

one evaluation of д̂(u) for each sample ui and the evaluations of

themonomials.We thus found that the gradient descent approach

is generally less computationally costly than the matrix-based

approach. While more sophisticated algorithms may perform

better, we have found that the above simple algorithm works

well in our case. Algorithm 2 shows the details.

Algorithm 2: Gradient descent estimator.

Parameter : lr: learning rate, T: number of iterations

f ← {}; u ← {};

for i ← 1 to N do
ui ← random();

fi ← ˆf (ui );

end
θ
min
← 0

M×1
;

for t ← 1 to T do
θ
min
← gradient_descent(θ

min
, lr, ui , fi );

end
return G(θ

min
) + 1

N (
∑N
i=1

fi − д̂(ui ,θmin
));

Discussion. The gradient descent approach is general and up-

dating the coefficient is less costly compared to solving a matrix.

The matrix approach can be used only when the residual is qua-

dratic to the parameters, as in the case for polynomials. In more

general cases where the residual is not a quadratic function of

the parameters, one can still use the gradient descent approach.

We advise to use the matrix for polynomials because it directly

solves for the optimal solution. At a low sample count, however,

we found that the matrix approach can sometimes be numerically

unstable as the matrix could be ill-conditioned. We have observed

this issue in particular for a higher-order polynomial in a high

dimensional space, as the number of entries in the matrix will be

large. In this case, the gradient descent approach might be better

suited. Our regression is by no means perfect, and using more

efficient regression techniques and implementation could lead to

further performance improvement.

6 EXPERIMENTS

Our implementation uses PBRT v3 [Pharr et al. 2016] as a ren-

dering system and Eigen [Guennebaud et al. 2010] as a solver for

linear systems. All the results were generated on AMDEPYC 7702

64-Core or Intel Core i9-8950HK Processor using eight threads for
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Fig. 4. Convergence plot for equal-time comparisons in Fig. 1 and Fig. 3.

The metric is relMSE. Our method converges faster than Monte Carlo

estimation in all but has similar performance in the Bathroom scene.

each. For comparison, we compare our method against conven-

tional MC integration and Crespo et al. [2021] using the relative

mean squared error (relMSE): 1/N
∑N
i=1

(Ii−Ri )2/(R2

i+0.01), where

I and R represent the rendered and the reference image, respec-

tively. The reference image R for each scene is computed with

65,536 samples per pixel.

To handle a vector (i.e., RGB) integrand in rendering, we first

estimate the RGB estimate Frgb by averaging RGB samples just as

Frgb ≈ ⟨Frgb⟩ = 1/N
∑N
i=1

ˆfrgb(ui ) where ˆfrgb(ui ) is the integrand
that returns an RGB sample. We then perform regression on the

luminance value of the samples, resulting in the luminance valued

G as the analytical integral. The reconstruction of the RGB value

based on our estimator is written as ⟨F ∗rgb⟩ = (
⟨Frgb ⟩/y(⟨Frgb ⟩))⟨F ⟩

∗

where y is the luminance function and ⟨F ⟩∗ estimate the lumi-

nance value of Frgb based on our method. In other words, we

correct the noisy luminance value of Frgb by our estimate.

6.1 Low-dimensional comparisons

We show in Fig. 1 and Fig. 3 an equal-time comparison between

the conventional MC integration and our approach using polyno-

mials of order 1 to 3 on three different scenes. The Dining Room

scene (Fig. 1) is composed of a single triangle light source for

direct illumination, making it a 2-dimensional integration prob-

lem. Our method shows significant variance reduction compared

to MC integration as predicted. Even in the penumbra region

where the reduction of error is small, our method is no worse

than MC integration. The Killeroos scene (top row, Fig. 3) is

composed of a single spherical light and motion blur, which is a

3-dimensional integration problem. Despite the fact that motion

blur introduces more discontinuities in the integrand—which

makes it difficult to approximate by polynomials of any order—

our method can still reduce the variance in most of the regions.

This result demonstrates that it is possible to achieve variance

reduction with model functions that only roughly approximate

the underlying integrand. The Bathroom scene (bottom row,

Fig. 3) has multiple mesh light sources picked randomly using

Balance + ours Optimal + ours

2.92E-3 1.96E-3 2.74E-3 1.86E-3

(a) (b) (c) (d)

Fig. 5. Equal sample comparison of two MIS techniques (BRDF+light

sampling) is performed using balance heuristics [Veach 1997] and optimal

weights [Kondapaneni et al. 2019]. The combination with our method

uses an order-2 polynomial basis. (a-d) Error maps and the relMSE values

marked at the bottom shows improvement brought by our method.

a random number, making it also a 3-dimensional integration

problem. Moreover, each light in this scene is a mesh light with

several triangles making discontinuities in the 2D area light pa-

rameterization. For this scene, the improvement in our method

is limited but no worse than MC integration.

Fig. 4 shows the error convergence plots for the scenes de-

scribed above. As predicted by our theory, our method consis-

tently outperforms MC integration once the solution to regres-

sion is almost converged. At a fewer sample count than 10 spp,

our method with higher order polynomials (order two and three)

may perform worse than Monte Carlo integration due to the

error in regression. This is because the matrix tends to be ill-

conditioned due to noise in the sampling. Even though a linear

model function (O1) is only slightly more complex than a con-

stant model function (MC), our method with O1 significantly

outperforms MC integration. We also observe that the maximum

possible reduction in variance is limited by the complexity of the

model function. There is thus a trade-off between the maximum

reduction of variance and its stability at a few sample count,

when one chooses a model function. The order or number of

basis also seems to impact the ovearhead.

6.2 Combination with multiple importance sampling

In Fig. 5, we show that our method can be used in conjunc-

tion with MIS [Veach and Guibas 1995]. From different sampling

strategies available during Multiple importance sampling (MIS),

we simply perform the regression on weighted samples from

each sampling strategy. Fig. 5 shows the results using 64 samples

per pixel of our method with two different importance sampling

techniques: BRDF and light sampling. We compare the balance

heuristic [Veach 1997] and the optimal weights [Kondapaneni

et al. 2019]. Our method improves the quality of the result for

both weighting schemes compared to Monte Carlo counterpart.

We also found that the combination of our method with optimal

weight [Kondapaneni et al. 2019] keeps the strength of these

two techniques, leading to the best variance reduction. The error

reduction brought by the optimal weights allows a closer regres-

sion to the integrand leading to a greater error reduction. This

result indicates that our method can take advantage of orthog-

onal variance reduction methods that simplify the shape of the

integrand in primary sample space.

6.3 High-dimensional comparisons

Our method directly extends to higher dimensions. We start the

numerical analysis with simple analytic integrands. In Fig. 6, we
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Fig. 6. Convergence plots comparing our method using polynomial bases

with a classical Monte Carlo estimator at different dimensionality. We

observe that performance stays unchanged if the function complexity

does not depend on the integration dimensionality (left column). Other-

wise, our method experiences a slight decrease of improvement with the

dimensionality but is still clearly advantageous compared to the Monte

Carlo estimator (right column).

MC Ours

3.34E-3 2.39E-3

Fig. 7. Equal sample comparison between classical Monte Carlo and

our method using an O2 polynomial basis. In this duck-cornell scene,

only the upper part is directly illuminated by the light source. The lower

part has indirect-illumination. The error map (relMSE) shows clear im-

provements using our method. relMSE values marked at the bottom.

show the convergence curves over 1D, 5D and 15D space for two

integrands: (a) sum of sinusoids and (b) a multi-dimensional ex-

ponential function. In both cases, our method shows significant

improvements in variance reduction. Both O1 and O2 polynomi-

als gives significant improvements. However, at low sample count

(up to about 100 samples) in 15D, O2 polynomial performs poorly.

This is because with increasing polynomial order, in higher di-

mensions, more samples are needed to better approximate the

control variate.
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Fig. 8. We study the impact of our method on the function complexity

by increasing the path length: 1, 2 and 3 bounces between the camera

and the light source. The dimensionality of the respective path length is

3D, 5D and 7D. At equal sample count, the improvements of our method

are directly affected by the complexity of the integrand.

We apply our method to a path tracing rendering. Fig. 7 shows

the results of our method for a duck-cornell scene rendered in

path tracing with 3 bounces. This corresponds to a 15D problem

in our algorithm: a 3D random number for each next-event esti-

mation and a 2D random number for the next-direction sampling

at each bounce. Improvements are visible in both directly- and

indirectly-illumniated regions. However, the improvements in

the indirectly-lit regions are less due to the strong variations

of the function. These variations come from the light making

several bounces, which makes the control variate function less

accurate than in the case of direct illumination. One can of course

consider having a more complex model function, but it will put

an additional computational overhead on our method.

Fig. 8 shows the improvement due to our method on illumi-

nation coming from different number of bounces. Our method

provides the largest improvement on direct illumination (the

top row), and the improvement generally decreases with more

bounces (themiddle and the bottom rows). Aswe discussed above,

it is not directly due to the increased number of dimensions for

higher number of bounces. We speculate that it is rather specific

to the fact that the integrand in the primary sample space be-

comes more and more complex for higher number of bounces.

Similar observations have been made in prior work that attempt

to approximate the integrand in the primary sample space [Cre-

spo et al. 2021; Guo et al. 2018; Zheng and Zwicker 2019], so

we believe that it is not specific to our regression approach. We

note that our method is still not performing worse than MC

integration even for higher number of bounces.

6.4 Comparison to Crespo et al. [2021]

Crespo et al. [2021] proposed two adaptive control variate tech-

niques using quadratures: one based on a quadrature per pixel

and one with a global quadrature for the whole image. As we

also treat each pixel independently, we have chosen to compare

our method to the former method, which has been shown to

be competitive. Specifically, Crespo et al. [2021] construct an

adaptive piecewise-polynomial control variate (per pixel) in the

primary sample space by recursively splitting the space based on

an error heuristic built upon nested quadrature rules and regions’

volume. We leave the possibility of extending our approach over

a block of pixels as future work.

Fig. 9 provides an equal-time comparison of Crespo et al.’s

approach with our O2 polynomial basis method for a 2D direct

illumination integration in two scenes. The dragon scene consist

of a simple object lit by a high-frequcency environment map. The
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Fig. 9. Equal-time comparison between our method and Crespo et al. [2021] where each pixel is considered independently. Columns (a)-(c) show the

control variate function for a pixel centered at each inset. Columns (d)-(f) show the error images for each inset. Following Crespo et al., we ensure

30% of the samples are used for building the control variate. For both the dragon and the chopper-titan scene, our method show relatively less error

((d)-(f)). Crespo et al. is efficient in some cases. For dragon scene, column (e), Crespo et al. gives worse error than the classical MC. The relMSE value of

our method is lower than Crespo et al.. For better visualization, please see the html viewer in the supplemental.
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Fig. 10. Equal-sample comparison of ourmethod using anO2 polynomial

function basis with Crespo et al. [2021] method.

chopper-titan scene contains glossy complex objects lit by a

low-frequency environment map. For both scenes, we show the

reference control variate function, the control variate functions

constructed by Crespo et al. and our method (columns (a)-(c)).

We also shows on columns (d)-(f) the error images of MC and

these different technique.

For functions shown in column (a), Crespo et al.’s method

can produce very accurate function approximations, resulting

in error reduction compared to MC method (d). However, in

columns (b, c), their adaptive control variate construction misses

some critical function regions, resulting in a poor approximation.

Moreover, stratifying the samples across regions with impor-

tance sampling increases this problem, resulting in higher error

than MC (columns e,f). In comparison, our method uses a crude

approximation of control variate via a polynomial function but

consistently outperforms the classical MC and is more robust

compared to Crespo et al.’s method.

Fig. 10 shows an equal-sample comparison between Crespo

et al.’s method and ours. For the vw-van and the teapot scenes,

our method significantly outperforms Crespo et al.’s in difficult

regions such as the bottom of the van and the reflections on

the bottom side of the teapot. However, for the house scene,

Crespo et al.’s method performs better especially on the house’s

facades. Despite such, it is noteworthy that the error reduction

by our method is more uniform across the scenes. Crespo et al.’s

method, on the other hand, shows significant improvement upon

classical MC in some regions, e.g., directly illuminated regions

of the vw-van and the teapot, but performs worse than MC in

some other regions.

Fig. 11 demonstrates the impact of importance sampling in

Crespo et al.’s method. We found that their importance sampling

strategy can increase variance, which can be explained by closely

investigating their adaptive subdivision scheme. In the first row

of Fig. 9, Crespo et al.’s control variate function misses important

integrand features. They used this approximation for importance

sampling as well which may increase variance.
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MC Crespo et al. [2021] Ours

w/o IS w/ IS

Fig. 11. Importance sampling (IS) performed in Crespo et al.’s approach

can increase the variance wrt classical MC due to bad IS strategy.

MC Crespo et al. no subdiv. Ours O2 poly.

3.33 × 10
−3

2.69 × 10
−3

2.057 × 10
−3

Fig. 12. Without recursive space subdivision, Crespo et al. appears to be

similar to our approach, but it is not. Our approach still performs better.

All methods are rendered with 64 spp. relMSE values are at the bottom.

Fig. 12 shows another experiment with no adaptive subdivision

in themethod of Crespo et al.. Without adaptive subdivision, their

method falls back to a control variate estimator using a simple

quadrature for a polynomial model function. This setup looks

deceivingly equivalent to ours, but they are different. Crespo

et al.’s method finds a polynomial via a quadrature rule with a

fixed set of points within the domain for their control variates.

Consequently, their control variate cannot take advantage of any

more samples than being required for the quadrature rule without

splitting. Our method, on the other hand, can take any number

of samples to improve the least-squares fit without any splitting.

The least-squares regression further makes sure to reduce the

variance bound as our formulation shows. Both the error map and

the relMSE values reported in Fig. 12 confirm our observation.

In summary, due to the lack of robustness during the quad-

rature construction caused by their fixed sample locations and

error heuristics, Crespo et al.’s method does not consistently

outperform the classical MC overall. In the case of inaccurate

subdivisions of the primary sample space, their method might

result in inefficient importance sampling, leading to higher errors

than MC. By contrast, our method is provably never worse than

the MC estimator despite that ours could result in rather coarse

approximations of the function, limiting the error reduction in

some regions. As future work, Crespo et al.’s adaptive model

for д̂ can potentially be useful in our formulation, but develop-

ing a practical least-squares regression algorithm for piecewise

polynomials remains challenging.

Order 2 poly. Step Gaussian Sine

Fig. 13. We compare our method with different basis functions at equal

sample count. Please refer to the supplemental material for more scenes

and bases.

6.5 Analysis

Choice of basis functions. We perform an experiment using

different basis functions in the regression. The results are shown

in Fig. 13. We compare the performance of order 2 polynomial,

step functions, Gaussian mixture and Sine functions. All these

basis have been chosen to contain the same number of param-

eters for a fair comparison. The quality of the results obtained

slightly varies according to the bases used and the scenes chosen.

Other results for additional bases and scenes is available in the

supplemental materials. In general, while it is challenging to

define a function basis robust for all situations, our experiments

show that polynomial basis works relatively well in many cases.

As long as a constant function is included in least-squares regres-

sion, our method would be no worse than MC integration, no

matter, what basis functions are chosen.

1x
y

x y

0.3

1 10 100
Number of lights

MC
Ours O1
Ours O2
Ours O3

(a)

(b)

(c)

L2
 e

rr
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 r
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Fig. 14. Comparison of integration error ratio with Monte Carlo as

a function of the number of lights in the scene. Our method is used

here with polynomial basis of order 1, 2 and 3. The drawing on the left

schematizes the integration problem.
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Fig. 15. Regression using a direct matrix approach and stochastic gradient descent (SGD). At a low-sample count, SGD performs better. At a high-sample

count, the direct matrix approach outperforms SGD. At high-order polynomial (order 7), the direct matrix approach has a very high overhead, making

SGD an attractive alternative. Time is reported in seconds.

Impact of discontinuities on polynomial basis. Polynomial bases

have difficulty in representing functions with many discontinu-

ities. In Fig. 14, we study the evolution of the integration error for

a fixed sample budget of 1024 samples when integrating the con-

tribution of multiple light sources over a diffuse plane (Fig. 14.a).

In this case, the number of discontinuities inside the 3D inte-

grand increases with the number of lights due to the random

decision on the light selection (Fig. 14.b). We study the impact

of using O1, O2 and O3 polynomials with our method against

the conventional Monte Carlo estimator. The plot in Fig. 14(c)

demonstrates that at a low number of lights, our method signifi-

cantly improves over the conventional Monte Carlo estimation.

However, this improvement decreases with the increase in the

number of discontinuities. With a large number of lights, the

error produced by our method becomes equivalent to that of

the Monte Carlo estimator, confirming that the polynomial ba-

sis behaves equivalently to a constant model function, i. e., the

conventional approach.

Computation time. We empirically found that the computation

overhead of our method becomes significant for higher-order

polynomial regression using the direct matrix approach. For ex-

ample, our method with low-order polynomials has negligible

overhead over MC integration (Fig. 3) but a polynomial of order

5 can cause 68% overhead in terms of running time. Similarly,

higher-dimensional integration also requires significant over-

head over MC integration. However, we focus in demonstrating

the versatility of our approach. Improving the regression compu-

tation is out of the scope for this work. Following above observa-

tion, we also investigate another approach for regression, such as

gradient descent, which can be a better option for higher-order

polynomials. The gradient descent approach scales well thanks

to its lower computational complexity (O(M) vs O(M2)) where

M is the number of monomials.

Matrix vs. Gradient descent solver. Fig. 15 shows the compari-

son between the gradient descent and the direct-matrix solver.

The results are demonstrated with 32spp and 256spp on a bath-

room scene taken from PBRT.We use three different polynomials

of order 2, 5 and 7. We compare the direct matrix approach based

on complete orthogonal decomposition and stochastic gradient

descent estimator (SGD) to solve the polynomial regression. At a

low sample count, SGD performs better than the direct matrix

approach as the matrix tends to be ill-conditioned due to noise

in sampling. At a high sample count, the direct matrix approach

outperforms SGD due to its ability to find a global minimum. For

MCMC

relMSE: 1.83relMSE: 1.83

GD - O3 - incrementalGD - O3 - incremental

relMSE: 1.63relMSE: 1.63

GD - O3 - T=1GD - O3 - T=1

relMSE: 1.56relMSE: 1.56 0.00.0

0.050.05

r
e
l
M
S
E

r
e
l
M
S
E

Fig. 16. Incremental regression-based Monte Carlo integration with

gradient descent. We render the Bathroom scene (256 spp) and compare

with MC and non-incremental gradient descent estimator. While the

incremental gradient descent has slightly higher error than its non-

incremental counterpart, both achieves less error than MC integration.

relMSE values are scaled by 10
−2
.

a high-order polynomial (order 7), the direct matrix approach

becomes computationally expensive whereas SGD runs at at least

2× faster speed while giving similar relMSE.

7 DISCUSSION

Incremental estimators. In our implementation, we assume that

the N sample estimator ⟨F ⟩∗ is constructed by first finding the

solution to regression д̂ using all the N samples, and then evaluat-

ing ⟨F ⟩∗ with the same N samples. Therefore, when N is changed

to N + 1, we need to solve regression again with N + 1 samples

first and then re-evaluate ⟨F ⟩∗ with the new д̂ using N + 1 sam-

ples. In some applications, such as progressive rendering, being

able to incrementally update both ⟨F ⟩∗ and д̂ as we add a new

sample is desirable. Thanks to the use of control variates, our

formulation allows such incremental update as follows.

Let us denote ⟨F ⟩∗N and д̂N as the estimated value and the

solution to regression withN samples. Using an online regression

algorithm, one can obtain д̂N+1 based on д̂N by adding a new

sample uN+1. We define the incremental estimate ⟨F ⟩∗N+1
as

⟨F ⟩∗N+1
= 1

N+1

(
N ⟨F ⟩∗N +

(
GN + ˆf (uN+1) − д̂N (uN+1)

))
(34)
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where GN+1 is the integral of д̂N+1. This estimator remains un-

biased since

E

[
⟨F ⟩∗N+1

]
= E

[
1

N + 1

(
N ⟨F ⟩∗N +

(
GN + ˆf (uN+1) − д̂N (uN+1)

))]
=

1

N + 1

(
NF + E

[(
GN + ˆf (uN+1) − д̂N (uN+1)

)] )
=

1

N + 1

(NF + F ) = F . (35)

The expected squared error of incremental estimators is likely

worse than that of non-incremental counterparts; the N sample

incremental estimator now combines the results of regression

for all the N − 1,N − 2, ..., 1 samples which might be numerically

unstable at the beginning. The incremental estimators are, how-

ever, often computationally less expensive for the same number

of samples than the non-incremental counterparts. We leave the

exact analysis of these differences as future work, but we show

a preliminary result in Fig. 16 where the incremental estimate

is performed with the gradient descent estimator. The numeri-

cal error of the incremental estimate is slightly higher than the

non-incremental version, but it still outperforms MC integration.

Differences from MCLS. Our regression-based Monte Carlo in-

tegration bears some similarities to Monte Carlo Least-Squares

MCLS) [Nakatsukasa 2018]. Nakatsukasa reformulated Monte

Carlo integration as least-squares regression followed by the ana-

lytical integration of the resulting function. MCLS also performs

no worse than Monte Carlo integration as long as a constant

function is included in regression. There are two major differ-

ences between MCLS and our approach. Firstly, MCLS considers

a model function д which integrates exactly to F (i.e., F = G).
Such a family of model functions is far more restrictive than

our model function which is allowed to integrate to any value.

Secondly, Nakatsukasa claims that MCLS is derived under an

entirely different framework than control variates, thus its con-

nection to control variates is unclear. In contrast, we show how

control variates is closely related to the combination of Monte

Carlo integration and least-squares regression. When we use a

model function д̂ such that G = F (i.e., keeps the integral value),

then our approach in fact reduces to MCLS. MCLS is thus can be

seen as a special case of our formulation.

Russian roulette. In our current implementation, we manu-

ally set all path lengths to be the same. This is because, for re-

gression it is necessary to fix the dimensionality of the search

space. Russian roulette, however may result in paths of differ-

ent length/dimensionality. One simple way to combine Russian

roulette with our approach would be to perform regression up to

a certain prescribed dimension and only invoke Russian roulette

for paths that have dimensionality higher than the prescribed one.

The high-dimensional sample components can then be projected

back into the lower-dimensional space.

8 LIMITATIONS AND FUTURE WORK

While our method often just works as a drop-in improvement

over Monte Carlo integration in many cases, there are several

limitations and future work.

Regression in our method incurs additional computation over

MC integration. Regression may or may not be worth the addi-

tional cost depending on the amount of error reduction in the

end. In general, regression becomes computationally more costly

for a more complex model function, but a complex function typi-

cally leads to better error reduction. There is a trade-off among

the reduction of error, the complexity of a model function, and

the computational overhead of the regression process. Finding

an optimal balance among those can potentially be achieved in

an adaptive manner. Our formulation does not specify how re-

gression should be solved in practice, so there is a large room of

design choices in its implementation.

Since our formulation is based on the primary sample space,

applying our method to a higher number of bounces in light

transport simulation is challenging. The dimensionality of the

primary sample space is directly proportional to the number of

bounces, and regression in a high dimensional is not numerically

stable. It is being recognized that light transport simulation has a

much lower dimensional structure in the original path space, as

was utilized by path guiding methods [Müller et al. 2017; Vorba

et al. 2014]. It would be interesting to study how our regression-

based formulation would benefit from such a low dimensional

structure of light transport.

Depending on how the regression is implemented, our method

can have a very small bias. When the same set of samples are

used for both regression of the control variate and estimation

of the difference, our estimator can be biased. Owen and Zhou

[2000] and Hickernell et al. [2005] have analyzed the amount of

bias introduced when estimating the α parameter and evaluating

the difference estimator using the same set of samples in control

variates. In brief, the bias is negligible compared to the variance of

the estimator and reduces at the order ofO(N−1) forN samples as

opposed toO(N−1/2) of the error ofMonte Carlo integration. This

makes our estimator consistent and the bias reduces faster than

variance. One can also always remove this bias by separating a

set of samples into two halves, performing regression only on the

other half, and taking the average of the two difference estimators,

in a manner akin to cross-validation. We, however, have not used

this approach in the results in this paper since we have observed

that bias is negligible. Our analysis is not influenced by this bias

since this bias happens only when the same set of samples are

used in its implementation of regression, while our analysis does

not assume any specific implementation of regression.
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