Joint Sampling and Optimisation for Inverse Rendering: Supplementary Material

Martin Balint
Max Planck Institute for Informatics
Saarbruecken, Germany
mbalint@mpi-inf.mpg.de

Hans-Peter Seidel
Max Planck Institute for Informatics
Saarbruecken, Germany
hpseidel@mpi-inf.mpg.de

Karol Myszkowski
Max Planck Institute for Informatics
Saarbruecken, Germany
karol@mpi-inf.mpg.de
Gurprit Singh
Max Planck Institute for Informatics
Saarbruecken, Germany
gsingh@mpi-inf.mpg.de

CCS CONCEPTS

- Computing methodologies \rightarrow Image processing; Ray tracing

ACM Reference Format:

Martin Balint, Karol Myszkowski, Hans-Peter Seidel, and Gurprit Singh. 2023. Joint Sampling and Optimisation for Inverse Rendering: Supplementary Material. In SIGGRAPH Asia 2023 Conference Papers (SA Conference Papers '23), December 12-15, 2023, Sydney, NSW, Australia. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3610548.3618244

A START-UP BIAS

To show our start-up bias, we rewrite Equation 7 as:

$$
\begin{align*}
\left\langle F_{i}\right\rangle_{M}= & \sum_{j=1}^{i-1} \prod_{k=j+1}^{i}\left[\alpha_{k}\right]\left(1-\alpha_{j}\right)\left\langle F_{j}\right\rangle \\
& +\prod_{k=1}^{i}\left[\alpha_{k}\right]\left\langle F_{0}\right\rangle+\left(1-\alpha_{i}\right)\left\langle F_{i}\right\rangle+\sum_{j=1}^{i} \prod_{k=j}^{i}\left[\alpha_{k}\right]\left\langle\Delta F_{j}\right\rangle \tag{1}
\end{align*}
$$

$\left\langle F_{0}\right\rangle$'s contribution diminishes over time. As $\beta_{F} \rightarrow 1$, the correlation between α and $\left\langle F_{i}\right\rangle$ also diminishes, leaving us with correlation between α_{k} and $\left\langle\Delta F_{j}\right\rangle$ as the main source of bias. As optimisation converges we expect our step size to shrink and $\operatorname{Var}\left[\left\langle\Delta F_{i}\right\rangle\right]$ to decline. Thus, as $\operatorname{Var}\left[\left\langle F_{i}\right\rangle\right]$ dominates Equation 8, α_{k} and $\operatorname{Var}\left[\left\langle\Delta F_{j}\right\rangle\right]$, become increasingly less correlated, thus, by extension, reducing correlation with $\left\langle\Delta F_{j}\right\rangle$ (Equation 14).

Growing β_{F} over the optimisation process is a simple way to make our meta-estimators consistent. However, in practice, we have found no benefit to this approach compared to setting β_{F} to a fixed value that we experimentally fit to the noise characteristics of the gradient estimator $\left\langle F_{i}\right\rangle$.

B PSEUDOCODE

Variance approximation with zero-centred, second moment EMAs:

[^0]```
class Moment2:
 def __init__(self, shape, decay = 0.9):
 self.decay = decay
 self.count = 0
 self.m2 = 0
 def step(self, x):
 self.count += 1
 w = 1.0 - self.decay
 w_sum = 1.0 - self.decay ** self.count
 self.m2 = self.m2 + (w / w_sum) * (x ** 2 -
 s self.m2)
```

Meta-estimation:

```
1 class Meta:
 def __init__(self, }\eta=0.001)
 self. }\eta=
 self.var = 0
 self.mean = 0
 self.}\mp@subsup{\alpha}{i-1}{}=-
 def step(self, }\langle\mp@subsup{F}{i}{}\rangle,\langle\Delta\mp@subsup{F}{i}{}\rangle,\operatorname{Var[}[\langle\mp@subsup{F}{i}{}\rangle],\operatorname{Var[}[\langle\Delta\mp@subsup{F}{i}{}\rangle])
 self.mean += \langle\Delta\mp@subsup{F}{i}{}\rangle
 self.var += Var[\langle\Delta\mp@subsup{F}{i}{}\rangle]
 \alpha= Var[\langleFi}\rangle] / (Var[\langle\mp@subsup{F}{i}{}\rangle] + self.var + 1e-30) #
 Inverse variance weighting
 \alpha=min(\alpha, 1 / (2 - self. }\mp@subsup{\alpha}{i-1}{})) # Alpha clipping
 self. }\mp@subsup{\alpha}{i-1}{}=
 self.mean = \alpha * self.mean + (1-\alpha)*\langleF
 self.var = \alpha ** 2 * self.var + (1 - \alpha) ** 2 *
 \Var[\langleFi
 return - self. \eta * self.mean / (sqrt(self.var) +
 c 1e-8)
```

Optimisation loop snippet:

```
1 Var[\langleF Fi}\rangle]= Moment2(
2 Var[\langle\DeltaFi
3 meta = Meta()
4
5 ..
7 Var[\langleFi}\rangle].\operatorname{step}(\langle\mp@subsup{F}{i}{}\rangle
8 Var[\langle\Delta\mp@subsup{F}{i}{}\rangle\mp@subsup{]}{D}{}.\operatorname{step}(\langle\Delta\mp@subsup{F}{i}{}\rangle/\operatorname{sqrt}(\Delta\mp@subsup{\pi}{i}{2}))
, }\Delta\mp@subsup{\pi}{i+1}{}= meta.step(diff, \langleFi\rangle, \langle\Delta\mp@subsup{F}{i}{}\rangle,\operatorname{Var}[\langle\mp@subsup{F}{i}{}\rangle].m2
```



```
10 }\mp@subsup{\pi}{i+1}{}=\mp@subsup{\pi}{i}{}+\Delta\mp@subsup{\pi}{i+1}{
```


[^0]:    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).
    SA Conference Papers '23, December 12-15, 2023, Sydney, NSW, Australia
    © 2023 Copyright held by the owner/author(s).
    ACM ISBN 979-8-4007-0315-7/23/12.
    https://doi.org/10.1145/3610548.3618244

