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Figure 1: We simultaneously optimise the spiral’s base colour, metalness and roughness. Our gradient meta-estimator quickly
recovers the gradient with just one finite-difference and two proportional samples per pixel. Adam’s default first moment
estimator (𝛽1 = 0.9) cannot adapt as quickly and often overshoots. After tuning Adam’s hyperparameters for this specific
problem, it approaches out method at 32 spp and matches it only at 64 spp.

ABSTRACT
When dealing with difficult inverse problems such as inverse ren-
dering, using Monte Carlo estimated gradients to optimise parame-
ters can slow down convergence due to variance. Averaging many
gradient samples in each iteration reduces this variance trivially.
However, for problems that require thousands of optimisation iter-
ations, the computational cost of this approach rises quickly.

We derive a theoretical framework for interleaving sampling
and optimisation. We update and reuse past samples with low-
variance finite-difference estimators that describe the change in
the estimated gradients between each iteration. By combining pro-
portional and finite-difference samples, we continuously reduce
the variance of our novel gradient meta-estimators throughout the
optimisation process. We investigate how our estimator interlinks
with Adam and derive a stable combination.
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We implement our method for inverse path tracing and demon-
strate how our estimator speeds up convergence on difficult opti-
misation tasks.
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1 INTRODUCTION
Forward rendering involves solving the light transport integrals
with given scene parameters, e.g., geometry, materials, textures, by
numerically estimating the rendering equation [Kajiya 1986; Pharr
et al. 2016]. Inverse rendering reverses this process by estimating the
scene parameters starting from a given target image. This process
involves inverting the rendering equation [Kajiya 1986].
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Such inversion tasks are typically solved by gradient descent.
Physically-based differentiable renderers [Jakob et al. 2022; Li et al.
2018; Zhang et al. 2020] facilitate these gradient-based optimisation
methods. The process involves backpropagating from an under-
lying loss function, quantifying the disparity between an image
generated with the current parameters and the target image, result-
ing in gradients w.r.t. the scene parameters. These gradient values
are approximated from a given set of samples, and subsequently,
the scene parameters are adjusted using these gradients to min-
imise the loss. The ultimate goal is to converge to a parameter set
that produces the target image. Due to the nature of Monte Carlo
integration, the estimated gradients can be extremely noisy, ham-
pering the performance of gradient-based optimisers. In inverse
rendering, gradients are estimated with tens to hundreds of rays
traced per pixel [Nimier-David et al. 2020; Zhang et al. 2019] to
minimise noise. Usually, inverse rendering requires hundreds to
thousands of iterations to converge; recomputing these gradient
estimates in every iteration comes at a large cost.

In this paper, we propose a theoretical framework that jointly
considers sampling and optimisation by deriving a theoretical frame-
work for interleaving them. We reuse past samples without intro-
ducing bias thanks to finite-difference estimators that describe the
change in the estimated gradients between each iteration. By com-
bining proportional and finite-difference samples, we continuously
reduce the variance of our novel gradient meta-estimators through-
out the optimisation process.

First, we introduce our meta-estimation theory and then discuss
our variance estimation strategies used to derive coefficients for
our meta-estimator. We investigate how our estimator interlinks
with Adam and derive a stable combination. We run experiments
to evaluate our method in the context of inverse rendering. Finally,
we discuss our method concerning future and concurrent work and
give our conclusions.

Our contributions include:

• Meta-estimation theory on combining proportional and finite-
difference estimators.

• Practical variance approximation techniques to effectively
implement meta-estimation.

• Implementation and evaluation of meta-estimation for in-
verse rendering. (We will release our code upon acceptance.)

2 RELATEDWORK
Differentiable Path Tracing. Path tracing accounts for global il-

lumination through physically accurate light transport by Monte
Carlo integration of the rendering equation [Kajiya 1986]. Recent
works proposed various approaches to differentiate such Monte
Carlo integrals and estimate derivatives w.r.t. scene parameters.
[Jakob et al. 2022; Li et al. 2018; Nimier-David et al. 2020; Zelt-
ner et al. 2021; Zhang et al. 2020]. While our work applies to any
method using gradient descent on Monte Carlo estimated gradients,
we mainly experiment with Path Replay Backpropagation [Vicini
et al. 2021]; a well-established state-of-the-art method for inverse
path tracing, implemented in Mitsuba 3 [Jakob et al. 2022].

Previous works have focused on sampling strategies [Bangaru
et al. 2020; Yan et al. 2022; Zhang et al. 2021] and improving the
optimisation itself [Nimier-David et al. 2020; Vicini et al. 2021]

to reduce noise in the gradients. Particularly relevant, concurrent
work by Chang et al. [2023] applies ReSTIR [Bitterli et al. 2020] in
parameter-space with the same goal of reducing the variance of the
estimated gradients.

Ray Differentials. Igehy [1999] first proposed ray differentials to
approximate derivatives for texture interpolation and anisotropic
filtering. Kettunen et al. [2015] combine ray differentials with
gradient-domain MLT [Lehtinen et al. 2013] to build unbiased
image-space gradient estimators for gradient-domain path trac-
ing. Manzi et al. [2016] extend their work to the spatiotemporal
domain.

We apply the general idea of finite-difference estimation to tem-
poral gradient averaging on a set of parameters. As we do not
assume any structure between individual parameters, we forgo
Poisson reconstruction and instead statistically average propor-
tional and integrate finite-difference samples.

Gradient averaging. Iterating with the arithmetic mean of gradi-
ent samples is well-understood to improve the convergence of opti-
misers. Several recursive schemes [Nesterov 1983; Polyak and Judit-
sky 1992] achieve fast convergence on convex problems [Moulines
and Bach 2011], with some proving particularly useful in deep learn-
ing [Sutskever et al. 2013]. Kingma and Ba [2014] propose start-up
bias-corrected exponential moving averaging on gradients; Adam
remains the de-facto optimisation algorithm for deep learning and
inverse rendering applications.

In recent work, Gower et al. [2020] analyse gradient averaging
methods based on finite sums; they show improvements in conver-
gence analogous to our work, although limited to convex problems.
Unfortunately, the finite-sum setting of algorithms like SAGA [De-
fazio et al. 2014] and SVRG [Johnson and Zhang 2013] does not
generalise to Monte Carlo integration [Nicolet et al. 2023].

Reducing the gradient variance is well understood to improve
convergence speed and stability. Previous works on optimising
neural networks increase the batch size to reduce this variance,
which is often preferable over slower learning rates [Smith et al.
2018].

Control Variates. Fieller and Hartley [1954] first propose control
variates as a weighted combination of correlated estimators, one of
which must be of a closed-form integral. Owen [2013] shows that
the optimal control weight is proportional to the covariance of the
estimators. Rousselle et al. [2016] generalise control variates to any
pair of correlated estimators through two-level Monte Carlo inte-
gration; they apply their work to spatiotemporal gradient-domain
rendering. Concurrent with our work, Nicolet et al. [2023] further
generalise control variates to recursive estimation, applying it to
primal renderings in the context of inverse path tracing.

Our work is distinctively different from control variates in that
we build on an independent finite-difference estimator rather than
a pair of correlated estimators. In particular, this formulation lets
us avoid covariance terms in our weighting scheme.

3 DIFFERENTIAL META-ESTIMATORS
Various Monte Carlo methods estimate a sequence of integrals.
Often, each integral is a function of the previous one, with the
sequence converging to a solution. Optimisation via inverse Monte
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Carlo is a prime example; we estimate gradients in each iteration,
adjust parameters accordingly, and repeat the process.

Our work is focused on improving the convergence speed and
stability of the optimisation process by reducing the variance of
the estimated gradients. We draw inspiration from control theory,
specifically noise reduction through the combination of propor-
tional and differential signals. These methods assume that samples
are drawn from known probability distributions, usually normal
distributions with known variances [Kalman 1960]. Unfortunately,
we cannot make such assumptions when dealing with Monte Carlo
noise.

We combine two estimators: a proportional estimator ⟨𝐹𝑖 ⟩ — any
Monte Carlo gradient estimator sampled independently between
iterations — and a finite-difference estimator ⟨Δ𝐹𝑖 ⟩ that estimates
the change of a gradient between two consecutive iterations.

Notation. Let 𝐹𝑖 denote the integral of function 𝑓 over the domain
X, given parameters 𝜋𝑖 for the current iteration 𝑖 ∈ [0,∞):

𝐹𝑖 =

∫
X
𝑓 (x, 𝜋𝑖 )dx . (1)

Let ⟨𝐹𝑖 ⟩ denotes the (proportional) Monte Carlo estimator of 𝐹𝑖 ,
meaning E[⟨𝐹𝑖 ⟩] = 𝐹𝑖 . For example, an estimator may sample 𝑓

given a density 𝑝 over X:

⟨𝐹𝑖 ⟩ =
𝑓 (x, 𝜋𝑖 )
𝑝 (x, 𝜋𝑖 )

. (2)

Finite-difference estimation. We write the change of 𝐹𝑖 between
consecutive steps as:

Δ𝐹𝑖 = 𝐹𝑖 − 𝐹𝑖−1 . (3)

A finite-difference estimator (⟨Δ𝐹𝑖 ⟩) estimates this change, ideally
with a low variance. For example, we can substitute Equation (1)
into Equation (3):

Δ𝐹𝑖 =

∫
X
𝑓 (x, 𝜋𝑖 ) − 𝑓 (x, 𝜋𝑖−1)dx , (4)

and sample with a density 𝑝 like in Equation (2):

⟨Δ𝐹𝑖 ⟩ =
𝑓 (x, 𝜋𝑖 ) − 𝑓 (x, 𝜋𝑖−1)

𝑝 (x, 𝜋𝑖 )
. (5)

Here we assume that 𝑓 is continuous w.r.t. 𝜋𝑖 . Although our theory
may apply to any Monte Carlo integral 𝐹𝑖 , we analyse the case
where 𝑓 (𝑥, 𝜋𝑖 ) = 𝜕𝐿/𝜕𝜋𝑖 is the gradient at the 𝑖-th iteration, for
some objective 𝐿.

3.1 Meta-estimation
Our meta-estimator aims to optimally combine each proportional
⟨𝐹𝑖 ⟩ and finite-difference estimator ⟨Δ𝐹𝑖 ⟩ available until the current
step 𝑖 . In this subsection, we establish the theoretical conditions
required for a variance-optimal, unbiased combination of both esti-
mators.

A finite-difference estimator ⟨Δ𝐹𝑖 ⟩, by its definition in Equa-
tion (3), lets us update any proportional estimator from the previous
step (⟨𝐹𝑖−1⟩) to the current step 𝑖 . This update can be done simply
by addition without introducing any bias. We can easily show this

by expanding the expected value of the sum:

E[⟨𝐹𝑖−1⟩ + ⟨Δ𝐹𝑖 ⟩] =
E[⟨𝐹𝑖−1⟩] + E[⟨Δ𝐹𝑖 ⟩] = 𝐹𝑖−1 + 𝐹𝑖 − 𝐹𝑖−1 = 𝐹𝑖 . (6)

We define our meta estimator as a weighted sum over the combi-
nation of all previous estimators up until step 𝑖-1 i.e., ⟨𝐹𝑖−1⟩𝑀 and
the current proportional and finite-difference estimators:

⟨𝐹𝑖 ⟩𝑀 = 𝛼𝑖 (⟨𝐹𝑖−1⟩𝑀 + ⟨Δ𝐹𝑖 ⟩) + (1 − 𝛼𝑖 )⟨𝐹𝑖 ⟩ . (7)

We initialise ⟨𝐹0⟩𝑀 = ⟨𝐹0⟩. As we sample all ⟨𝐹𝑖 ⟩ and ⟨Δ𝐹𝑖 ⟩ inde-
pendently, the optimal 𝛼𝑖 coefficients are given by inverse variance
weighting [Sinha et al. 2011]:

𝛼𝑖 =
Var[⟨𝐹𝑖 ⟩]

Var[⟨𝐹𝑖 ⟩] + Var[⟨𝐹𝑖−1⟩𝑀 ] + Var[⟨Δ𝐹𝑖 ⟩]
. (8)

This simple recurrent relation captures the variance optimal combi-
nation of all previously sampled proportional and finite-difference
estimators.

To summarise, we introduce the optimal and unbiased meta-
estimator in Equation (7). However, in practice, we use a more
efficient implementation which suffers from some start-up bias.
We describe this version in the following section. To visualise the
estimators mentioned above and to motivate the design of our
optimiser, we show a simple example in Figure 2.

4 VARIANCE ESTIMATION
Implementing Equation (7) in practice presents a challenge due
to the unknown variances of our estimators. In this section, we
describe how we approximate each variance term. We must balance
three main objectives: the efficiency of our variance approximation
methods, the optimality of our approximated 𝛼𝑖 coefficients, and
any bias potentially introduced to ⟨𝐹𝑖 ⟩𝑀 .

4.1 Proportional estimator variance
We approximate Var[⟨𝐹𝑖 ⟩] as a zero-centred raw moment [Papoulis
and Pillai 1984], computed using an exponential moving average
(EMA) with coefficient 𝛽𝐹 :

Var[⟨𝐹𝑖 ⟩] = 𝛽𝐹 Var[⟨𝐹𝑖−1⟩] + (1 − 𝛽𝐹 )⟨𝐹𝑖 ⟩2 . (9)
This formulation is similar to Adam’s second moment estimate
[Kingma and Ba 2014]. Here, Var[⟨𝐹𝑖 ⟩] is a large, stable value that
only varies in the initial stage of optimisation, when parameter
changes can notably affect the problem’s overall noise characteris-
tics. A large 𝛽𝐹 coefficient minimises the correlation of the approx-
imate variance to any singular ⟨𝐹𝑖 ⟩, resulting in an overall stable
variance approximation.

4.2 Finite-difference estimator variance
As the proportional estimator reaches steady-state, we can safely
assume that ⟨𝐹𝑖 ⟩ are identically distributed over consecutive it-
erations. Unfortunately, the same observation does not apply to
finite-difference estimation as this finite-difference depends on the
optimisation step we take in the previous iteration. For example, a
larger step will cause a larger shift in the per-parameter gradients.

To resolve this issue we propose to decouple the optimisation
step size (|Δ𝜋𝑖 |) from the approximated finite-difference estimator
variance (Var[⟨Δ𝐹𝑖 ⟩]). We begin the derivation of this decoupling
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Figure 2: We optimise the rate parameter of an exponential distribution such that the mean of the distribution matches our
target value of 2.0. We take 32 samples of the distribution in each iteration and compute an L2 loss between their mean and the
target value. The bottom row shows insets of the graphs in the top row, indicated by grey regions. On the left, we show how
Adam and our method reach the ground truth rate parameter 0.5. Error bars show the run-to-run variation of the optimised
parameter. Our method converges significantly faster and is more stable than Adam. On the right, we show the estimators we
use for our method; the proportional estimator has a large variance, while the finite-difference estimator is much less noisy.
Our meta-estimator combines both, with its variance reducing over time.

by expanding the fraction in Equation (5) by the Euclidean step size
| |Δ𝜋𝑖 | |2 of the previous iteration:

⟨Δ𝐹𝑖 ⟩ =
𝑓 (x, 𝜋𝑖 ) − 𝑓 (x, 𝜋𝑖−1)

𝑝 (x, 𝜋𝑖 )
=

𝑓 (x, 𝜋𝑖 ) − 𝑓 (x, 𝜋𝑖−1)
| |Δ𝜋𝑖 | |2𝑝 (x, 𝜋𝑖 )

| |Δ𝜋𝑖 | |2 .
(10)

For sufficiently small step sizes, we can rearrange the terms in Equa-
tion (10) to approximate the finite-difference of gradients 𝑓 as
the second-order gradient (𝜕𝑓 /𝜕𝜋 ), times a unit-directional vec-
tor, times the left over terms:

⟨Δ𝐹𝑖 ⟩ ≈
(
𝜕𝑓

𝜕𝜋
(x, 𝜋𝑖 ) ·

Δ𝜋𝑖
| |Δ𝜋𝑖 | |2

)
| |Δ𝜋𝑖 | |2
𝑝 (x, 𝜋𝑖 )

. (11)

Applying the variance operator to Equation (11) gives us the decou-
pled finite-difference variance (Var[⟨Δ𝐹𝑖 ⟩]𝐷 ):

Var[⟨Δ𝐹𝑖 ⟩] ≈ Var
[(

𝜕𝑓

𝜕𝜋
(x, 𝜋𝑖 ) ·

Δ𝜋𝑖
| |Δ𝜋𝑖 | |2

)
1

𝑝 (x, 𝜋𝑖 )

]
| |Δ𝜋 | |22

= Var[⟨Δ𝐹𝑖 ⟩]𝐷 | |Δ𝜋 | |22 . (12)

We use a zero-centred EMA, with a coefficient 𝛽Δ, to approximate
this decoupled variance as:

Var[⟨Δ𝐹𝑖 ⟩]𝐷 = 𝛽Δ Var[⟨Δ𝐹𝑖−1⟩]𝐷 + (1 − 𝛽Δ)
⟨Δ𝐹𝑖 ⟩2

| |Δ𝜋 | |22
. (13)

We generally use a small 𝛽Δ coefficient as Var[⟨Δ𝐹𝑖 ⟩]𝐷 can change
quickly and is typically less noisy than Var[⟨𝐹𝑖 ⟩]. Finally, we can
rescale Var[⟨Δ𝐹𝑖 ⟩]𝐷 to estimate Var[⟨Δ𝐹𝑖 ⟩]:

Var[⟨Δ𝐹𝑖 ⟩] = Var[⟨Δ𝐹𝑖 ⟩]𝐷 | |Δ𝜋 | |22 . (14)

We found this decoupled variance more closely distributed between
iterations, better suited for approximation via moving averages.

4.3 Meta-estimator variance
We approximate the variance of our meta estimator in Equation (7)
by recurrently applying the variance operator:

Var[⟨𝐹𝑖 ⟩𝑀 ] = 𝛼2𝑖 (Var[⟨𝐹𝑖−1⟩𝑀 ] + Var[⟨Δ𝐹𝑖 ⟩])
+ (1 − 𝛼𝑖 )2Var[⟨𝐹𝑖 ⟩] . (15)

Here we assume 𝛼𝑖 to be a non-random value to simplify our math-
ematical derivation. Later in Section 6, we show the choice of 𝛼𝑖 is
less significant as long as its correlation with the gradient samples
diminishes.

4.4 Alpha clipping
Meta-estimation is most vulnerable to underestimated Var[⟨𝐹𝑖 ⟩𝑀 ];
unless a significant Var[⟨Δ𝐹𝑖 ⟩] indicates a shift, ⟨𝐹𝑖 ⟩𝑀 will only
slowly correct its overconfidently estimated value by averaging ⟨𝐹𝑖 ⟩
over many iterations. The risk of underestimation is the greatest
while our exponential moving averages accumulate their initial
samples. Clipping alpha based on the iteration resolves this risk:

𝛼𝑖 = min(𝛼𝑖 , 1 − 1/(𝑖 + 1)) . (16)
Intuitively, Equation (16) constrains alpha by the perfect average of
all previous estimates; any value above this must be overestimated.
We generalise this observation to the entire optimisation process,
assuming that Var[⟨𝐹𝑖 ⟩] is similar in subsequent steps:

𝛼𝑖 = min(𝛼𝑖 , 1/(2 − 𝛼𝑖−1)) . (17)

5 OPTIMISATION
Combining meta-estimation and optimisation creates a complex
feedback loop; the meta-estimated gradients ⟨𝐹𝑖 ⟩𝑀 depend on their
finite-difference estimates ⟨Δ𝐹𝑖 ⟩, which depend on the optimiser’s
steps Δ𝜋𝑖 , which, in turn, depend on the gradients estimated in the
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previous step ⟨𝐹𝑖−1⟩𝑀 . It becomes crucial that the meta-estimator
provides the optimiser with reliable gradients and that the opti-
miser makes steps that let the meta-estimator converge. We aim to
combine Adam with meta-estimated gradients. We explain Adam’s
variance approximation and update rule to show where we can
integrate meta-estimation.

Adam [Kingma and Ba 2014] is well known for its robustness
to outlier gradient samples; upon encountering an outlier, the es-
timated second moments adjust in the same step, swiftly pulling
down the step size. This mechanism works because Adam first
updates its second-moment estimate:

𝑣𝑖 = 𝛽2𝑣𝑖−1 + (1 − 𝛽2)⟨𝐹𝑖 ⟩2 , (18)

corrects the EMA startup bias:

𝑣𝑖 = 𝑣𝑖/(1 − 𝛽𝑖2) , (19)

and then divides the step size by its square root:

Δ𝜋𝑖+1 = −[ �̂�𝑖√
𝑣𝑖 + 𝜖

, (20)

where𝑚𝑖 and 𝑣𝑖 refer to Adam’smoment estimates,[ to the learning
rate, 𝛽2 to Adam’s second moment coefficient, and 𝜖 to a small value
to ensure numerical stability. 𝛼𝑖 and Var[⟨𝐹𝑖 ⟩] behave similarly in
our case; first, we update Var[⟨𝐹𝑖 ⟩] for the current step (Equa-
tion (9)), compute 𝛼𝑖 (Equation (8)), and add the outlier gradient
⟨𝐹𝑖 ⟩ to our meta-estimator ⟨𝐹𝑖 ⟩𝑀 weighted by (1−𝛼𝑖 ) (Equation (7)).
Therefore, just like 𝛽2 for Adam, 𝛽𝐹 offers a tradeoff between outlier
robustness and estimation bias.

When using optimisers like RMSProp [Graves 2014] and Adam
[Kingma and Ba 2014], lower variance gradients naturally acceler-
ate convergence since these optimisers divide their step size by the
standard deviation of the gradients (Equation (20)). Additionally,
Momentum [Sutskever et al. 2013] helps these optimisers handle
tricky non-linear, multivariate curvatures such as ravines. The opti-
misers’ effectiveness is greatly reduced if the noise in the gradients
overpowers the variance arising from non-linearities in the esti-
mated moments required for these mechanisms.

Naively feeding the meta-estimated gradients to Adam is prob-
lematic; Adam computes its moment estimates, assuming the input
gradients in each iteration to be independent. Meanwhile, our meta-
estimator outputs an already averaged gradient (Equation (7)) with
a strong positive correlation to previous averages. Adam’s moment
estimates are also redundant since we already estimate the vari-
ance of our meta-estimator Var[⟨𝐹𝑖 ⟩𝑀 ]. Therefore, we formulate
the update step in terms of our estimates:

Δ𝜋𝑖+1 = −[ ⟨𝐹𝑖 ⟩𝑀√︁
Var[⟨𝐹𝑖 ⟩𝑀 ] + 𝜖

. (21)

Dividing by
√︁
Var[⟨𝐹𝑖 ⟩𝑀 ] sets the step size based on our meta-

estimator. As Var[⟨𝐹𝑖 ⟩𝑀 ] responds to changes in the estimated
gradients much more quickly than Adam’s second-moment esti-
mate with the suggested 𝛽2 = 0.999 parameter, the stability of our
method may seem uncertain. We observe that the responsivity of
our method actually improves convergence, especially when com-
bined with the decoupled estimation of Var[⟨Δ𝐹𝑖 ⟩]. Optimisation
speeds up quickly when low-noise gradients are available and slows
down naturally when approaching a minimum.

6 EXPERIMENTS
We run several experiments to confirm our method’s behaviour and
verify its theory. We also compare our method against Adam, as it is
used in state-of-the-art inverse rendering pipelines. We implement
our method in Mitsuba 3 [Jakob et al. 2022] and use Path Replay
Backpropagation [Vicini et al. 2021] to sample gradients computed
with the unbiased Mean Relative Squared Error loss [Deng et al.
2022; Pidhorskyi et al. 2022]. For texture optimisation tasks, we
use gradient preconditioning as proposed by Nicolet et al. [2021].
We compute ⟨Δ𝐹𝑖 ⟩ with a simplified form of the shift mapping
proposed by Kettunen et al. [2015], only accounting for the BRDF
sampling. While this implementation is sufficient for our proof-of-
concept demonstrations, a full implementation of shift mapping
can also account for changes in geometry at an insignificant cost
compared to proportional samples. Unless mentioned otherwise,
we tune learning rates of each method in each experiment.

Variance reduction without lag. We investigate the variance re-
duction our method can achieve while the scene parameters are
changing. We run a fixed linear interpolation of the parameters
without an optimiser to prevent any effects from the feedback of
the gradients.

Forward gradients of several pixels in Figure 3 show that our
method avoids the lag in gradients typical of EMAs. Our meta-
estimate’s actual variances and estimate variances are much tighter
than the estimates computed by Adam. Furthermore, our method
remains more stable upon encountering outliers.

Approximation accuracy. We repeat the previous setup in Fig-
ure 4, only now we test an exponentially decaying change in the
gradients. Again, our meta-estimator stays within 0.5 to 2 times its
predicted standard deviation. As the gradients settle, our method
provides a consistent variance reduction (Row 1), averaging a large
number of samples wherever possible. Meanwhile, Adam struggles
with high-variance gradients (Row 2) and is thrown off by outliers.

We also show the approximated variances compared to ground
truth variances computed over 1000 independent runs. Our approxi-
mation methods perform reasonably, only overestimating Var[⟨𝐹𝑖 ⟩]
(Row 3). This overestimation results in generally conservative 𝛼𝑖
values, erring on the side of robustness rather than maximising
variance reduction (Row 5). On the other hand, we approximate
Var[⟨Δ𝐹𝑖 ⟩] (Row 4) with little bias, although with often a large
run-to-run variance.

Multivariate optimisation. We simultaneously optimise an ob-
ject’s colour, metalness, and roughness, as shown in Figure 1. Thanks
to our meta-estimator, our method can traverse the loss surface
without losing past samples. Furthermore, our finite-difference esti-
mates let our meta-estimator adjust rapidly, avoiding the overshoots
typical of Momentum-based methods. Even when tuning Adam’s
hyperparameters for the specific problem, it can only match our
method at an over 20 times increase in computational cost, not
counting the time spent on hyperparameter tuning.

Texture optimisation. We show a difficult texture optimisation
case in Figure 6. Texture optimisation requires disentangling global
illumination with very few gradient samples per texel. Adam can
only take a few steps within a fixed budget at a high sample count,
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Initial state Target

Meta estimated

2 spp input

Estimated gradient

Estimated deviation

Gradient samples

True gradient

Figure 3: We estimate forward gradients of the left wall’s
colour’s blue channel while linearly changing the scene from
the initial state (top left) to the target state over 100 itera-
tions. The dashed line represents the actual gradient, dots
the gradient samples, the solid line the estimated gradient,
and the shaded area the estimated standard deviation. Er-
ror bars every 10 iterations show the run-to-run variation
of the estimated gradient. Meta-estimation eliminates lag,
improves robustness to outliers, and offers lower variance
while more accurately estimating this variance. We select
the three pixels w.r.t. the actual gradient variance; blue is
the noisiest, orange is at 75’th percentile, and green is the
median.

requiring a high learning rate that skips over the intricate loss
surface necessary to navigate for disentangling various effects. At a
lower sample count, however, Adam struggles to progress as steps
devolve into a random walk as the scale of the gradients shrinks
close to minima.

High-dimensional optimisation. In Figure 7, we optimise an emissive-
absorptive volume of size 256×256×256 voxels, totalling 70 million
parameters. Perfectly fitting such a non-physical volume to ren-
dered images is impossible. Thus, the optimiser needs to balance
per-pixel losses for a good approximation, further needing to dis-
entangle the small subset of parameters visible through any given
pixel. Previous works avoid convergence to local minima by upsam-
pling the optimised volume in several stages; our method does not
need this workaround. On the other hand, Figure 8 shows that our
method provides less benefit when our finite-difference estimator’s
sampling is too sparse across the volume.

4

2

0

2

4

Ou
r g

ra
di

en
ts

0.5

0.0

0.5

1.0

1.5

0.4

0.2

0.0

0.2

0.4

0.6

4

2

0

2

4

Ad
am

 g
ra

di
en

ts

0.5

0.0

0.5

1.0

1.5

0.4

0.2

0.0

0.2

0.4

0.6

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ap
pr

ox
im

at
ed

 p
ro

po
rti

on
al

 
 st

an
da

rd
 d

ev
ia

tio
n

0.0

0.2

0.4

0.6

0.8

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.4

0.2

0.0

0.2

0.4

0.6

0.8
Ap

pr
ox

im
at

ed
 fi

ni
te

-d
iff

er
en

ce
 

 st
an

da
rd

 d
ev

ia
tio

n

0.02

0.00

0.02

0.04

0.06

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

Ap
pr

ox
im

at
ed

 a
lp

ha
s

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

Iterations

Figure 4: Following the same setup as Figure 3, we show the
estimated gradients and standard deviations of our meta-
estimator and Adam. Our meta-estimators achieve signif-
icantly lower actual variance in each case, while also pro-
viding much more accurate approximations. Dashed lines
represent actual or optimal values, solid lines a randomly
sampled run, while error bars show run-to-run variation. In
addition, we show violin plots for alpha, demonstrating how
our method is more likely to be conservative and not to be
swayed by outliers.

Zero-centred EMAs. We chose to use zero-centred moving aver-
ages so that we do not need to approximate the mean of our estima-
tors directly. This approach is generally more robust and memory
efficient, though it overestimates variance at large signal-to-noise
ratios. However, gradients generally have a low signal-to-noise
ratio, so this tradeoff works in our favour. Figure 5 (top-left) demon-
strates how non-zero-centred variance approximation is unstable,
providing unreliable alphas, thus causing optimisation to diverge.
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Non-zero-centred variance
1+2 spp per iteration

Diverged

Without alpha clipping
1+2 spp per iteration

Diverged

Independent variance samples
1+2 spp per iteration

Partially diverged

Ours
1+2 spp per iteration

Figure 5: We ablate our design choices, demonstrating their
importance for robust gradient estimation and optimisation.
Each modification of our method is less robust than our
results in Figure 6.

Alpha clipping. Alpha clipping helps resolve cases when our
approximated variances are inaccurate, improving robustness. It
may hinder the variance reduction of our method in the special case
when Var[⟨𝐹𝑖 ⟩] is sharply decreasing over iterations. However, we
have not encountered this behaviour with our tested proportional
estimators. Figure 5 (bottom-left) shows an ablation without alpha
clipping for a scene from Figure 6, demonstrating rapid divergence
as the initial variance approximations are unreliable.

Sample reuse. We use the same samples for rendering and vari-
ance approximation. This correlation introduces some bias at the
start of the optimisation process, which diminishes over time. Fig-
ure 5 (top-right) shows an unbiased ablation using uncorrelated
samples. Although this independently approximated variance elim-
inates bias, it misses outliers in the samples used for gradient esti-
mation, causing the parameters receiving these outliers to diverge.

7 LIMITATIONS
Estimators ⟨Δ𝐹𝑖 ⟩ are not generally available for many problems.
Kettunen et al. [2015] propose shift mapping for path tracing, which
we use in our work. Our meta-estimators rely heavily on ⟨Δ𝐹𝑖 ⟩;
as we recurrently sum Var[⟨Δ𝐹𝑖 ⟩] in Equation (15), it inherently
bounds the variance of our meta-estimator. Doing so is fine as long
as Var[⟨Δ𝐹𝑖 ⟩] is quadratic w.r.t. the step size (Equation (14)). Thus,
we need to ensure this property when building finite-difference
estimators while also aiming for the lowest variance to achieve the
best stability and convergence with meta-estimation.

Zeltner et al. [2021] show that gradient estimators benefit from
specialised differential sampling strategies. The same is true of

finite-difference estimators; our naive toy formulation in Equa-
tion (5) glosses over this problem where 𝑝 (x, 𝜋𝑖 ) is usually only
optimised by importance sampling 𝑓 (x, 𝜋𝑖 ), not the difference be-
tween 𝑓 (x, 𝜋𝑖 ) and 𝑓 (x, 𝜋𝑖−1).

Suboptimal sampling strategies of ⟨𝐹𝑖 ⟩ compound the issue. As
our work focuses on gradient estimation, meaning 𝐹𝑖 are gradients,
sampling of ⟨𝐹𝑖 ⟩ is not yet well established. For example, Zeltner
et al. [2021] show the poor performance of roughness gradient
estimators. We experience these issues first-hand, as we show in
Figure 9.

8 CONCLUSION
Our proposed meta-estimation technique and corresponding adap-
tation of the Adam update rule can substantially improve conver-
gence when descending on noisy gradients, reducing computation
costs by several orders of magnitude. We solve cases where low-
sample-count gradients are too noisy for fast convergence while
high-sample-count gradients are prohibitively expensive to com-
pute for the required number of iterations on difficult non-linear,
multivariate problems.

Future work. We look forward to applications of meta-estimation
to various inverse Monte Carlo problems, especially as MC gradient
estimators become prominent in machine learning [Mohamed et al.
2020]. Building good gradient and finite-difference estimators may
seem challenging — and are the main limitation of our method —
but it is undoubtedly a fruitful direction for future work. We did
not investigate training deep neural networks in this work but see
it as the next step once low-variance finite-difference estimators
become available.
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Figure 6: We optimise diffuse textures, placing a potted plant in the extremely noisy Veach Ajar scene. At 64 spp, Adam can
only afford to take a few steps at a large learning rate and cannot match small details, further failing on complex interactions
such as the leaf’s reflection on the pot’s side, where navigating a difficult loss surface is necessary. At 3 spp, Adam reduces to a
random walk after reaching vaguely accurate parameters where gradients vanish against the high noise level. Our estimator
shows good convergence. Textures remain a little blurry as a known consequence of regularisation [Nicolet et al. 2021]. The
texture of the glossy pot (third inset) shows relatively worse convergence due to the concerns discussed in Section 7.

.
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Figure 7: We optimise emission and absorption volumes in a NeRF-like experiment. Regarding computational cost, our method
lies between 2 spp and 4 spp Adam at one finite-difference and two proportional samples. However, we greatly outperform
both regarding convergence and final quality. Although the final quantitative difference is smaller, we resolve jarring artefacts
such as holes in the volume and overall blur.
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Figure 8: Same setup as Figure 7. Our method performs worse here as the volume is sparser, concentrating our finite-difference
samples less. Thus, parameters at individual voxels are samples relatively sparsely, making finite-difference estimation for the
whole volume difficult.
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Figure 9: We optimise the 2K roughness texture of the Chalice scene from Chang et al. [2023]. Using only basic shift mapping,
our finite-difference estimator struggles to cope with the changes in roughness over sharp lighting. As the roughness parameter
influences our sampling strategy, this is a challenging case for finite-difference estimation.
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