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Abstract. Generative artificial intelligence (AI) has made unprecedented advances in vision language models over the past
two years. These advances are largely due to diffusion-based generative models, which are very stable and simple to train.
These diffusion models are tasked to learn the underlying unknown distribution of the training data samples. During the
generative process, new samples (images) are generated from this unknown high-dimensional distribution. Markov Chain
Monte Carlo (MCMC) methods are particularly effective in drawing samples from complex, high-dimensional distributions.
This makes MCMC methods an integral component for both the training and sampling phases of these models, ensuring
accurate sample generation.

Gradient-based optimization is at the core of modern generative models. The update step during the optimization forms a
Markov chain where the new update depends only on the current state. This allows exploration of the parameter space in a
memoryless manner, thus combining the benefits of gradient-based optimization and MCMC sampling. MCMC methods have
shown an equally important role in physically based rendering where complex light paths are otherwise quite challenging to
sample from simple importance sampling techniques.

A lot of research is dedicated towards bringing physical realism to samples (images) generated from diffusion-based gener-
ative models in a data-driven manner, however, a unified framework connecting these techniques is still missing. In this course,
we take the first steps toward understanding each of these components and exploring how MCMC could potentially serve as
a bridge, linking these closely related areas of research. Our tutorial aims to provide necessary theoretical and practical tools
to guide students, researchers and practitioners towards the common goal of generative physically based rendering. All Jupyter
notebooks with demonstrations associated to this tutorial can be found on our project webpage https://sinbag.github.io/mcmc/.

https://sinbag.github.io/mcmc/
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1 Overview

���������������

����������������

���������������� ������������������ ��
�	���������������� �����
�������������

����
�������
���
���������

�����������
�

���������

��
��
��

��
��
���

��
��
���
�

Figure 1: This course provides an overview of MCMC methods, which are powerful tools for sampling from complex
distributions. An example of such a distribution is shown in the middle row (Part II). These complex distributions are
common in physically based rendering and generative modeling. Additionally, we will review the impact of MCMC methods
on gradient-based optimization techniques, which typically aim to find good local (or global) minima in the optimization
landscape (inset on the middle-right).

MCMC methods are powerful tools for sampling from complex, high-dimensional probability distributions, which are
ubiquitous in modern computational problems. Whether you are working with Bayesian inference in statistics, machine
learning, or any field involving probabilistic models, MCMC provides a robust framework for gaining insights and making
accurate predictions.

In this course, we introduce the terminology associated to probabilistic models. We start from the theoretical foundations
essential to establish the ground work for Markov chains Section 2. We introduce stochastic differential equations (SDEs)
that are essential to describe stochastic systems evolving over time. Brownian motion is one such example. We later on
discuss Langevein and Hamiltonian dynamics which are capable of exploring the anisotropic regions far more efficiently.
Markov chains are a memoryless way to sample paths described by the SDEs. In Section 3, we discuss various Markov chain
Monte Carlo (MCMC) sampling methods with direct applications to physically based rendering. In Section 4, we introduce
stochastic gradient descent (SGD) optimization algorithm which is at the core of all machine learning tasks. We show that
SGD update step can be seen as a Markov chain and more advanced MCMC sampling methods can be employed to better
explore the optimization manifolds. Lastly, in ?? we study variational autoencoders, how they are driven by evidence lower
bound and their connection to variational diffusion models. We then discuss energy-based models which, although slow to
train, provides a lot of flexibility. We conclude with the exciting research directions that can follow from this course.
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2 Theoretical background
Markov Chains are mathematical models used to describe systems that transition from one state to another, where the
probability of each transition depends only on the current state (this property is known as the "memoryless" property or
Markov property). The system moves between discrete states with given transition probabilities. Markov Chains are often
represented as sequences of random variables.

Figure 2: To create a Markov chain, we start with a random sample (a) that is generated with a given proposal (shown in
orange). (b) This sample becomes the current state. The next sample (new state) is then generated from the current state
following the proposal. (c) As the chain continues to grow, we obtain a sequence of samples that represents a Markov chain.
(d) When run long enough, this Markov chain can generate samples that matches the target distribution.

2.1 Stochastic differential equations (SDEs)
SDEs describe systems that evolve over continuous time with randomness (noise) involved. SDEs
often model complex phenomena like stock prices or physical systems influenced by random
factors. It describes how we simulate motion numerically. The motion could be of organic
"microscopic" particles or of inorganic particles.

Consider particles jiggling in the water (shown on the right). There are a huge number of
water molecules (∼ 1024). Each particle is on average moving along certain trajectory (i.e., drift)
with some jiggle (randomness or diffusion). SDEs can be used to simulate such stochastic motion.
Even though the particles are jiggling in random directions, in ensemble, their motion can be
well-predicted. An SDE typically takes the form [Roberts and Stramer, 2002]:

𝑑x𝑡 = 𝜇 (x𝑡 , 𝑡)︸  ︷︷  ︸
drift

𝑑𝑡 + 𝜎 (x𝑡 , 𝑡)︸  ︷︷  ︸
rate of diffusion

𝑑𝑊𝑡 (1)

where x𝑡 is the state variable at time 𝑡 , 𝜇 (x𝑡 , 𝑡) is the drift term, representing the deterministic part of the dynamics, 𝜎 (x𝑡 , 𝑡)
is the diffusion term, representing the stochastic part of the dynamics and𝑊𝑡 is a Wiener process or Brownian motion, which
introduces randomness into the system.

The solution of an SDE can exhibit the Markov property, where future behavior depends only on the present state and
not on the path that led to it. In continuous time, the evolution of states in an SDE can be thought of as a continuous Markov
process.

2.1.1 Brownian motion

Brownian motion is the simplest form of an SDE and serves as the
foundation for more complex models (like Langevin dynamics). It is also
known as a Wiener process. It is a continuous-time stochastic process
with the following properties:

• 𝑊0 = 𝑥0.

• 𝑊𝑡1 has independent increments.

• 𝑊𝑡2 −𝑊𝑡1 ∼ N(0, 𝑡 − 𝑠) for 0 ≤ 𝑡1 < 𝑡2.

• 𝑊𝑡 varies continuously wrt to 𝑡 .
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It is a fundamental stochastic process that describes the random motion of particles suspended in a fluid. The motion is
typically modeled as a stochastic process or random walk. The motion is completely random with no memory of past states,
and it’s often modeled using the Fokker-Planck equation for probability density evolution or as a pure diffusion process. It
is used to describe motion at very small scales (e.g., molecular scales) where thermal fluctuations dominate. In Fig. 3, we
simulate the random walk in space. Although the motion is fully stochastic, it can be directed to follow certain constraints.

(a) (b) (c) (d) (e)

Figure 3: Brownian motion for different target densities. Simulating Brownian motion is the same as performing a random
walk (a). However, we can restrict the motion along certain trajectories (b-e). The red dot represents the starting point, and
the blue dashed line (b,d) or the blue region (c) represents the targetted region/trajectory. The motion is simulated to partially
fill the space to demonstrate the evolution of the Markov chain.

2.1.2 Langevin Dynamics

Langevin dynamics describes the motion of a particle under the influence of both deterministic forces and random noise. It
extends Brownian motion by adding a drift term representing deterministic forces and a damping term. It models systems
where particles experience both random thermal fluctuations and deterministic forces. The Langevin equation is an SDE and
is given by

𝜆
𝑑x𝑡
𝑑𝑡

= −𝑑𝑈 (x)
𝑑x

+ 𝜂 (x) (2)

where𝑈 (𝑥) is the potential energy as a particle’s position x𝑡 and 𝜂 (𝑥) is the noise term. The potential energy term represents
the influence of an external or internal force that depends on the particle’s position and is typically associated with physical
interactions like gravity, electrostatic forces, or molecular bonds. The dynamics of the Langevin equation Eq. (2) can be
written as:

𝑑x𝑡 = −∇𝑈 (x)𝑑𝑡 +
√

2 𝑑𝑊𝑡 (3)

where 𝑑𝑊𝑡 represents the time derivation of the standard Brownian motion. The potential energy term guides the particles
along the target distribution 𝑝 (𝑥). The key relationship between potential energy𝑈 (𝑥) and the probability distribution 𝑝 (𝑥)
is given by the Boltzmann distribution in thermal equilibrium 𝑝 (𝑥) ∝ exp(−𝛽𝑈 (𝑥)). The Boltzmann distribution tells us that
the probability of a particle being in a particular position is exponentially related to its potential energy at that position.
Particles are more likely to be found in regions of lower potential energy. Therefore, we can set the potential energy to the
negative of the logarithm of the target distribution in Eq. (3). The resulting Langevin dynamics has the form:

𝑑x𝑡 = ∇ log𝑝 (x) +
√

2 𝑑𝑊𝑡 (4)

where ∇ log𝑝 (x𝑡 ) is the log-probability of the target distribution 𝑝 and𝑊𝑡 is brownian motion or the Wiener process.

Discretizing SDEs. The Euler-Maruyama method is a numerical scheme used to approximate the solution of stochastic
differential equations (SDEs). This method is particularly useful in simulating stochastic processes like those described by
Langevin dynamics. The idea behind discretizing the SDE is to approximate the continuous process x(𝑡) at discrete time
steps 𝑡0, 𝑡1, 𝑡2, · · · where 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡 with time step Δ𝑡 . The discretized SDE can have the form:

x𝑛+1 = x𝑛 + 𝜇Δ𝑡 + 𝜎
√
Δ𝑡𝜉𝑛 (5)

where 𝜉 ∼ N(0, 1) is a normally distributed random number. It is a simple and widely used method for solving SDEs, though
it may require small time steps for accurate results in systems with strong noise or high variability.
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Figure 4: Access to the gradients (vector field) of the target distribution (a) is a natural information we can have for
exploration. Most Markov transitions are diffusive in nature, i.e., the they can spend too much time near the initial point.
In order to make large jumps away from the initial point, and into new, unexplored regions of the typical region, we need
to exploit information about the geometry. Hamiltonian dynamics is the unique procedure for automatically generating
this coherent exploration for sufficiently well-behaved target distributions. It not only allows efficient movement in the
neighborhood of a mode (b) but also towards the mode that needs to be explored (c). The figure is inspired from Betancourt
[2018].

2.1.3 Hamiltonian Dynamics

In Hamiltonian dynamics, we describe a system using a function called the Hamiltonian, which usually represents the total
energy (kinetic + potential) of the system. Hamiltonian dynamics uses coordinates (where something is) and momentum
(how fast it’s moving and in what direction) to describe motion. This shift helps in analyzing complex systems more
easily [Betancourt, 2018].

Consider, for example, a typical problem of exploring the target distribution density during optimization. Usually, the
information we have is the differential structure of the target distribution which we can query through the gradient of the
target distribution density. In particular, the gradient defines a vector field in parameter space sensitive to the structure of the
target distribution Fig. 4(a). The gradients, however, can only guide us towards the parametrization-sensitive neighborhood
like towards the mode (high density region)Fig. 4(c), but not in the parameterization-invariant neighborhoods. To ensure, we
can explore all regions of the distribution we need to ensure a coherent exploration of the geometry of the typical set (the red
rings in Fig. 4b,c).

Following Betancourt [2018], we can think of this exploration as if launching a satellite in a stable orbit around a planet.
To ensure the satellite stays within the orbit, we need to give sufficient momentum to counteract the gravitational attraction.
In probabilistic perspective, this gravitational pull can be thought of as the gradient vector field guiding the exploration. If
sufficient momentum is not injected, the exploration will always be moving towards the mode. We can introduce momentum
in the probabilistic structure using auxillary momentum parameters. But we have to ensure that the probabilistic structure
ensures conservative dynamics. Conservative dynamics in physical systems requires that volumes are exactly preserved.
Hamiltonian dynamics provides us this procedure to introduce such auxillary momentum.

Phase space. Instead of dealing with target parameter space, the state of a Hamiltonian system is represented in a space
called phase space, where each point corresponds to a unique combination of position and momentum. The points are lifted
from the parameter space to the phase space, undergoes trajectory exploration and then projected back to the parameter
space.

Hamilton’s equation. The dynamics of the system are governed by two main equations, known as Hamilton’s equations,
which tell us how the position and momentum change over time. They can be written as:

𝑑𝑞

𝑑𝑡
=
𝜕𝐻 (𝑞,𝑚)

𝜕𝑞
,
𝑑𝑚

𝑑𝑡
= − 𝜕𝐻 (𝑞,𝑚)

𝜕𝑚
(6)

where 𝑞 is the generalized coordinate (position),𝑚 is the generalized momentum and𝐻 (𝑞,𝑚) is the Hamiltonian, representing
the total energy of the system.
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Hamiltonian function. The Hamiltonian function 𝐻 (𝑞,𝑚) represents the total energy of the system and is typically given
by:

𝐻 (𝑞,𝑚) = 𝑈 (𝑞) + 𝐾 (𝑚) (7)

where 𝑈 is the potential energy, often related to the negative log-likelihood of the target distribution and 𝐾 is the kinetic
energy. When combined with stochastic elements, it leads to methods like Hamiltonian Monte Carlo, which are used for
sampling from complex distributions. We will explore Hamiltonian Monte Carlo in the coming sections.

2.2 Monte Carlo integration
Estimating high-dimensional integrals e.g., 𝐼 =

∫
Ω
𝑓 (𝑥)𝑑𝑥 is usually achieved by numerical integration methods like Monte

Carlo. Monte Carlo estimator of an integral 𝐼 has a form:

𝐼𝑁 =
1
𝑁

𝑁−1∑︁
𝑖=𝑜

𝑓 (x𝑖 )
𝑝 (x𝑖 )

(8)

where 𝑓 (·) is the function to be integrated over the domain Ω, 𝑝 represents the proposal distribution to extract 𝑁 samples
x𝑖 where 𝑖 ∈ 0, . . . , 𝑁 − 1. Such estimation is error prone and is visible as noise in rendered images using physically based
light transport rendering. Several variance reduction strategies are proposed in the literature Veach [1998]. Importance
sampling is one such strategy and is known to reduce the variance. To perform importance sampling, samples are drawn
from a proposal distribution and weighted to be used in the estimator Eq. (8). This strategy can be quite efficient if proposal
distribution is well-matched with the target distribution. However, finding a right proposal distribution is not always trivial.
Also, importance sampling can become impractical for high-dimensional problems where finding a good proposal distribution
is challenging. This is where MCMC sampling methods plays a crucial role.

2.3 MCMC sampling methods
MCMC method is a powerful tool to generating samples from complex arbitrary distributions. These samples can then be
used to approximate integrals such as Eq. (8). MCMC is a class of algorithms that generate samples from a target distribution
by constructing a Markov chain that has the target distribution as its equilibrium distribution. MCMC algorithm works as
follows:

• Initialization: Start with an initial state x0

• Transition: Define a transition mechanism (often a probability distribution) to move from the current state x𝑡 to a new
state x𝑡+1. Common algorithms include the Metropolis-Hastings algorithm [Veach and Guibas, 1997].

• Stationarity: Ensure that the Markov chain has the target distribution as its stationary distribution. Over time, the
distribution of the samples from the chain will converge to the target distribution.

• Sampling: Collect samples after a burn-in period (initial samples are discarded to allow the chain to converge).

In this part, we will introduce Metropolis-Hastings, Langevin Monte Carlo and Hamilotnian Monte Carlo sampling methods.
MCMC sampling methods can be used for very complex and high-dimensional distributions where direct sampling is difficult.
Different MCMC algorithms can be tailored for specific types of target distributions. We will also highlight their shortcomings
e.g., MCMC methods require many iterations to converge to the target distribution, which can be computationally expensive.

2.3.1 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is an MCMC method for obtaining a sequence of samples from a probability distribution
from which direct sampling is difficult. Here’s a step-by-step algorithm for the Metropolis-Hastings method:

• Initialize the state,

• For each iteration, propose a new state from the proposal distribution,

• Compute the acceptance ratio and accept or reject the proposed state based on a random draw from a uniform
distribution.
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A python pseudo code is shown here:

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # Target distribution: e.g. 2D Gaussian
5 def target_distribution(x):
6 return np.exp(-0.5 * np.dot(x, x))
7

8 # Proposal distribution: e.g. Gaussian with mean at the current state
9 def proposal_distribution(x, sigma=1.0):
10 return x + np.random.normal(scale=sigma, size=x.shape)
11

12 # Metropolis-Hastings algorithm
13 # Metropolis-Hastings algorithm
14 def metropolis_hastings(initial_state, num_samples, proposal_sigma):
15 samples = []
16 x_t = np.array(initial_state)
17

18 for _ in range(num_samples):
19 x_star = proposal_distribution(x_t, proposal_sigma)
20

21 acceptance_ratio = min(1, target_distribution(x_star) / target_distribution(x_t))
22 if np.random.rand() < acceptance_ratio:
23 x_t = x_star
24 samples.append(x_t.copy())
25

26 return np.array(samples)
27

28 # Parameters
29 initial_state = [0.0, 0.0]
30 num_samples = 10000
31 proposal_sigma = 1.0
32

33 # Generate samples using Metropolis-Hastings
34 samples = metropolis_hastings(initial_state, num_samples, proposal_sigma)
35 print(samples.shape)
36

37 # Plot the samples
38 plt.figure(figsize=(8, 8))
39 plt.plot(samples[:, 0], samples[:, 1], 'o', markersize=1)
40 plt.title('Metropolis-Hastings Samples')
41 plt.xlabel('x[0]')
42 plt.ylabel('x[1]')
43 plt.show()

2.3.2 Langevin Monte Carlo sampling

Langevin Monte Carlo (LMC) is a class of Markov Chain Monte Carlo (MCMC) algorithms that generate samples from a
probability distribution of interest by simulating the Langevin Equation. It leverages the gradient of the log-probability
(log-likelihood) to guide the sampling process more effectively. The update rule for LMC is given by:

x𝑡+1 = x𝑡 +
𝜏2

2 ∇ log𝑝 (x𝑡 ) + 𝜏𝜉𝑡 (9)

where x𝑡 is a current sample, 𝜏 is the time step, ∇ log𝑝 (x𝑡 ) is the log-probability of the target distribution 𝑝 and 𝜉𝑡 is the
noise term, typically drawn from a standard normal distribution N(0, 𝐼 ).

2.3.3 Annealed Langevin Monte Carlo sampling

Annealed Langevin Monte Carlo (ALMC) is a variant of LMC that introduces an annealing schedule. Annealing is a process
where the "temperature" of the system is gradually decreased, starting from a high value (which allows the sampler to explore
the state space more freely) and gradually lowering it to focus more on high-probability regions.

In ALMC, the target distribution is tempered by introducing a temperature parameter T, and this parameter is gradually
annealed. The tempered distribution is given by: 𝑝𝑇 (x) ∝ 𝑝 (x)1/𝑇 . The update rule for ALMC is similar to LMC but
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incorporates the temperature parameter:

x𝑡+1 = x𝑡 +
𝜏2

2𝑇 ∇ log𝑝 (x𝑡 ) + 𝜏𝜉𝑡 (10)

where 𝑇 decreases over time according to a schedule. Typically, 𝑇 starts from a high value and gradually decreases to 1.
While LMC is effective for sampling from unimodal distributions or when the modes are well-separated and the gradient

information is reliable. On the other hand, ALMC is useful for sampling from multimodal distributions where the modes are
not easily separable, as the annealing process helps in exploring the global structure before focusing on high-probability
regions.

2.3.4 Hamiltonian Monte Carlo sampling

A direct connection between SDEs and MCMC is also found in the Hamiltonian Monte Carlo (HMC) method. HMC leverages
concepts from physics, particularly Hamiltonian dynamics, which are described by differential equations. The dynamics are
typically simulated using numerical methods that solve differential equations, ensuring efficient exploration of the target
distribution.

HMC offers a powerful set ofMarkov transitions that are capable of performingwell over a large class of target distributions.
The major challenge in implementing HMC is generating the Hamiltonian trajectories themselves. Formally, integrating
along the vector field define by Hamiltonian equations is equivalent to solving ordinary differential equations in phase space.
However, most of the ODE solvers can drift away from the trajectories accumulating error over time.

We can, however, use the geometry of the phase space to construct extremely powerful family of numerical solvers
known as the use symplectic integrators [Leimkuhler and Reich, 2005, Hairer et al., 2013]. These integrators are robust to drift
and enable high-performance implementaiton of HMC method. Symplectice integrators are straightforward to implement
in practice. If the probabilistic distribution of the momentum is independent of the position, then we can employ a simple
leapfrog integrator. Given a time discretization, the leapfrog integrator simulates the exact trajectory by precise interleaving
of discrete momentum and position updates that ensures exact volume preservation on phase space.

2.3.5 Discussion

In summary, MH is simple and flexible but can be inefficient for complex or high-dimensional problems. Langevin dynamics
improves on MH by using gradient information, but requires smoothness and introduces discretization issues. HMC is the
most efficient in high dimensions, particularly for smooth distributions, but is computationally expensive and requires careful
tuning. We provide a detailed comparison among these methods along different aspects in Table 1.

MH can be applied to a wide variety of distributions as long as you can evaluate the target distribution’s density up to a
normalizing constant. The algorithm is conceptually straightforward and easy to implement. It can be used with any proposal
distribution, allowing for customization to the problem at hand. It guarantees to converge to the true target distribution (if
ergodic conditions are met). However, if the proposal distribution is poorly chosen, it may explore the space inefficiently
(slow mixing and high autocorrelation). The performance of the algorithm depends heavily on the proposal distribution and
its scale. Poor choices can result in high rejection rates. MH can be slow for high-dimensional problems, as proposals often
move inefficiently in large spaces.

Langevin dynamics can take advantage of the gradient of the log-posterior, making it more efficient than random-walk
methods like MH, especially for smooth target distributions. The gradient information helps proposals move toward high-
probability regions, leading to faster exploration of the space. Proposals are more informed, so they generally require
less tuning than vanilla MH. On the other hand, calculating the gradient can be expensive, especially in high-dimensional
or complex models. LMC assumes that the log-posterior is differentiable and smooth. It may not work well with highly
non-smooth distributions. Since Langevin dynamics is a continuous process, discretizing it to use in practice introduces bias
unless corrected (e.g., through the Metropolis-adjusted Langevin algorithm, MALA).

Finally, HMC can make large, informed jumps in the parameter space, allowing it to explore high-dimensional spaces much
more efficiently than random-walk-based methods like MH. The proposals are designed to make larger, more informed steps,
which reduces autocorrelation and improves convergence speed. Like Langevin dynamics, HMC leverages gradients to propose
new states, making it well-suited for smooth, differentiable posterior distributions. However, HMC depends on parameters
like step size and the number of leapfrog steps. Poor tuning can lead to either rejection of proposals or inefficient exploration.
Each iteration requires solving Hamiltonian dynamics via the leapfrog integrator, which is computationally expensive in
high-dimensional models. HMC can struggle to explore multimodal distributions, as its trajectories are deterministic and
may not easily traverse between modes.

8



Aspect Metropolis-Hastings (MH) Langevin Monte Carlo (LMC) Hamiltonian Monte Carlo
(HMC)

Efficiency Low for high dimensions (ran-
dom walk behavior)

Better than MH, guided by gra-
dients

Very efficient, especially in high
dimensions

Gradient usage No Yes Yes
Autocorrelation High, especially with poor pro-

posals
Lower than MH Very low due to long, informed

trajectories
Tuning required Yes (proposal distribution) Yes (step size for discretization) Yes (step size, number of

leapfrog steps)
Scalability Poor in high dimensions Moderate Good for large dimensions
Applicability Very general Requires smoothness and gradi-

ents
Requires smoothness and gradi-
ents

Computational
cost per step

Low Moderate High

Convergence Slower, especially for bad pro-
posals

Faster, thanks to gradient guid-
ance

Fast, but sensitive to parameter
settings

Suitability for
multimodality

Decent, but still slow May struggle with multimodal
targets

Poor, deterministic paths strug-
gle with multiple modes

Table 1: Comparing MH, LMC and HMC sampling methods

3 MCMC in rendering
Physically based rendering algorithms simulate the behavior of light to turn scene representations describing object shape
and optical properties into realistic images. For this, they must simulate various physical laws that can be roughly classified
into transport and scattering, i.e., the propagation of light through space, and its local interaction with the objects comprising
the scene. From a mathematical perspective, the entire problem reduces to evaluating a series of high-dimensional integrals
to determine the radiance 𝐼 𝑗 received by each pixel 𝑗 of a virtual camera observing the scene, i.e.:

𝐼 𝑗 =

∫
Ω
𝑓𝑗 (x) dx. (11)

The function 𝑓𝑗 characterizes this process for given pixel 𝑗 , while Ω depends on the specific formulation and algorithm
being used. The dimension of Ω is generally proportional to the number of subsequent scattering events that should be
considered. This number can be rather large and ranges from tens to many thousands of dimensions to deal with highly
scattering materials like clouds, milk, skin, etc. For this reason, Monte Carlo methods have become the method of choice in
the last decades.

3.1 Path-space
Veach [1998] introduced a particularly general variant of the integration problem from Equation 11 known as the path space
formulation that we discuss here for the special case of scenes containing only surfaces (i.e., lacking volumetric effects). It
decomposes the integration domain Ω into union of subspaces:

Ω B
∞⋃
𝑛=2

Ω𝑛, and

Ω𝑛 B {x1 · · · x𝑛 | x1, . . . , x𝑛 ∈ M} , (12)

whereM is the set of surfaces within the virtual scene. Elements x̄ = x1, . . . x𝑛 ∈ Ω𝑛 referred to as paths denote potential
trajectories that light can take while traveling from the light source towards the virtual sensor.

The pixel intensity 𝐼 𝑗 is given by

𝐼 𝑗 =

∫
Ω2

𝑓 (x1x2) d𝐴(x1, x2) +
∫
Ω3

𝑓 (x1x2x3) d𝐴(x1, x2, x3) + . . . . (13)
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Figure 5: Illustration of a simple light path with four vertices and its corresponding weighting function.

Because some paths carry more illumination from the light source to the camera than others, the integrand 𝑓 : Ω → R is
needed to quantify their “light-carrying capacity”; its definition varies based on the number of input arguments and is given
by Equation (15). The total illumination 𝐼 𝑗 arriving at the camera is often written more compactly as an integral of 𝑓 over the
entire path space, i.e.:

C

∫
Ω
𝑓 (x̄) d𝐴(x̄). (14)

The definition of the weighting function 𝑓 consists of a product of terms—one for each vertex and edge of the path:

𝑓 (x1 · · · x𝑛) = 𝐿𝑒 (x1 → x2)
[
𝑛−1∏
𝑘=2

𝐺 (x𝑘−1 ↔ x𝑘 ) 𝑓 (x𝑘−1 → x𝑘 → x𝑘+1)
]
𝐺 (x𝑛−1 ↔ x𝑛)𝑊 ( 𝑗 )

𝑒 (x𝑛−1 → x𝑛). (15)

The arrows in the above expression symbolize the symmetry of the geometric terms as well as the flow of light at vertices.
x𝑖 → x𝑖+1 can also be read as a spatial argument x𝑖 followed by a directional argument −−−−→x𝑖x𝑖+1. Figure 5 shows an example
light path and the different weighting terms. We summarize their meaning below:

• The first term 𝐿𝑒 (x1 → x2) is the emission profile of the light source. This term models the amount of light emitted
from position x1 traveling towards x2. It equals zero when x1 is not located on a light source.

• The last term𝑊
𝑗
𝑒 (x𝑛−1 → x𝑛) is the sensitivity profile of pixel 𝑗 of the camera; we can think of the pixel grid as an

array of sensors, each with its own profile function.

• 𝐺 (x↔ y) is the geometric term, which specifies the differential amount of illumination carried along segments of the
light path. Among other things, it accounts for visibility: when there is no unobstructed line of sight between x and y,
𝐺 evaluates to zero.

• 𝑓 (x𝑘−1 → x𝑘 → x𝑘+1) is the bidirectional scattering distribution function (BSDF), which specifies how much of the light
that travels from x𝑘−1 to x𝑘 then scatters towards position x𝑘+1. This function characterizes the material appearance of
an object (e.g., whether it is made of wood, plastic, concrete, etc.).

Over the last 40 years, considerable research has investigated realistic expressions for the terms listed above. In this article,
we do not discuss their internals and prefer to think of them as black box functions that can be queried by the rendering
algorithm. This is similar to how rendering software is implemented in practice: a scene description might reference a
particular material (e.g., car paint) whose corresponding function 𝑓 is provided by a library of material implementations. The
algorithm accesses it through a high-level interface shared by all materials, but without specific knowledge about its internal
characteristics.
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3.2 Multiple Importance Sampling
Many Monte Carlo rendering methods can be interpreted as sampling strategies that generate paths x̄ according to a
carefully chosen probability distribution 𝑝 . Ideally, such a strategy would employ a density function 𝑝 that is approximately
proportional to the integrand 𝑓 , thereby producing renderings with low variance. However, such strategies are unfortunately
not available in general.

A general building block of sampling strategies are random walks: for example, starting with the endpoint vertex x𝑛−1
(the position of the camera), we could randomly sample the predecessor x𝑛−2 followed by x𝑛−3, etc. Similarly, we could
generate a random sample on the light source x1 and then work our way towards the camera. Paths could also be sampled
from both sides or the middle (e.g. a window of a room). Combinations of such walks produce a family of sampling strategies
with useful properties.

Given a set of sampling strategies on a consistent domain Ω, it is possible to evaluate and compare their densities
to combine them effectively. This is the key insight of a widely used technique known as multiple importance sampling
(MIS) [Veach and Guibas, 1995].

Suppose two statistical estimators of the pixel intensity 𝐼 𝑗 are available. These estimators can be used to generate two
light paths x̄1 and x̄2, which have path space probability densities 𝑝1 (x̄1) and 𝑝2 (x̄2), respectively. The corresponding MC
estimates are given by

⟨𝐼 (1)
𝑗
⟩ = 𝑓 (x̄1)

𝑝1 (x̄1)
and ⟨𝐼 (2)

𝑗
⟩ = 𝑓 (x̄2)

𝑝2 (x̄2)
.

To obtain a combined estimator, we could simply average these estimators, i.e.:

⟨𝐼 (3)
𝑗
⟩ B 1

2
(
⟨𝐼 (1)
𝑗
⟩ + ⟨𝐼 (2)

𝑗
⟩
)
.

However, this is not a good idea, since the combination is affected by the variance of the worst ingredient estimator. Instead,
MIS combines estimators using weights that are related to the underlying sample density functions:

⟨𝐼 (4)
𝑗
⟩ B 𝑤1 (x̄1)⟨𝐼 (1)𝑗 ⟩ +𝑤2 (x̄2)⟨𝐼 (2)𝑗 ⟩.

A particularly simple weighting function known as the balance heuristic has the following expression for two input strategies:

𝑤𝑖 (x̄) B
𝑝𝑖 (x̄)

𝑝1 (x̄) + 𝑝2 (x̄)
. (16)

Veach originally showed that no other choice of positive weighting functions can significantly improve upon the balance
heuristic. Ivo et al. [2019] later introduced a generalization to negative weights that provably minimizes variance in the
general case.

Combinations of multiple sampling techniques are often an effective way to reduce variance to an acceptable amount.
Yet, even such combinations can fail in simple cases, as we will discuss next.

3.3 Limitations of Monte Carlo Path Sampling
Ultimately, all Monte Carlo path sampling techniques can be seen to compute integrals of the weighting function 𝑓 using a
variety of importance sampling techniques that evaluate 𝑓 at many randomly chosen points throughout the domain Ω.

Certain input, particularly scenes containing metal, glass, or other shiny surfaces, can lead to integrals that are difficult
to evaluate. Depending on the roughness of the surfaces, the integrand can take on large values over small regions of the
integration domain. Surfaces of lower roughness lead to smaller and higher-valued regions, which eventually collapse to
lower-dimensional sets with singular integrands as the surface roughness tends to zero. This case where certain paths cannot
be sampled at all is known as the problem of insufficient techniques Kollig and Keller [2002].

Convergence problems arise whenever high-valued regions receive too few samples. Depending on the method used, this
manifests as objectionable noise or other visual artifacts in the output image that gradually disappear as the sample count 𝑁
tends to infinity. However, due to the slow convergence rate of MC integration (typical error is O(𝑁 −0.5)), it may not be an
option to wait for the error to average out. Such situations can force users of rendering software to make unrealistic scene
modifications (e.g., disabling certain light interactions), compromising realism in exchange for obtaining converged-looking
results within a reasonable time.

Figure 6 illustrates the behavior of several path sampling methods when rendering caustics at the bottom of the swimming
pool. This refers to the light patterns resulting from focused refraction by ripples in the water surface.

In Figure 6 (a), light tracing samples paths starting from the light source. This eventually leads to a path segment that
leaves the pool, but it never hits the camera aperture and thus cannot contribute to the output image. Path tracing in
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(a) Path tracing from the light source (b) Path tracing from the camera

?

?

?
(c) Bidirectional path tracing

Figure 6: Illustration of the difficulties of sequential path sampling methods when rendering caustic patterns at the bottom of
a swimming pool. (a, b): Unidirectional techniques sample light paths by executing a random walk consisting of alternating
transport and scattering steps. The only way to successfully complete a path in this manner is to randomly “hit” the light
source or camera, which happens with exceedingly low probability. (c): Bidirectional techniques trace paths from both sides,
but in this case they cannot create a common vertex at the bottom of the pool to join the partial light paths.

Figure 6 (b) generates paths from the opposite end and also remains extremely inefficient. Assuming for simplicity that rays
leave the pool with a uniform distribution in the probability of hitting the sun with an angular diameter of ∼ 0.5◦ is on the
order of 10−5. Bidirectional sampling methods (Figure 6 (c)) tracing from both sides also fail: they generate two vertices at
the bottom of the pool as shown in the figure, but these cannot be connected: the resulting edge would be fully contained in
a surface rather than representing transport between surfaces.

The main difficulty in scenes like this is that caustic paths are tightly constrained: they must start on the light source,
end on the aperture, and satisfy Snell’s law in two places. Sequential sampling approaches are able to satisfy all but one
constraint and run into issues when there is no way to complete the majority of paths.

Paths like the one examined in Figure 6 lead to poor convergence in other settings as well; they are collectively referred
to as specular–diffuse–specular (SDS) paths due to the occurrence of this sequence of interactions in their path classification.
SDS paths occur in common situations such as a tabletop seen through a drinking glass standing on it, a bottle containing
shampoo or other translucent liquid, a shop window viewed and illuminated from outside, as well as scattering inside the eye
of a virtual character. Even in scenes where these paths do not cause dramatic effects, their presence can lead to excessively
slow convergence in rendering algorithms that attempt to account for all transport paths. It is important to note that while
the SDS class of paths is a well-studied example case, other classes (e.g., involving glossy interactions) can lead to many
similar issues. It is desirable that rendering methods are robust to such situations.

Correlated path sampling techniques based on MCMC offer an attractive way to approach such challenges because they
provide a framework in which the costly discovery of an SDS path can be amortized by exploring its neighborhood.

3.4 Metropolis Light Transport
In 1997, Veach and Guibas proposed an unusual rendering technique named Metropolis Light Transport [Veach and Guibas,
1997], which applies the Metropolis-Hastings algorithm to Equation 14. Using correlated samples and highly specialized
mutation rules, their approach enables more systematic exploration of the integration domain, avoiding many of the problems
encountered by methods based on standard Monte Carlo and sequential path sampling.

MCMC rendering methods in general sample light paths proportional to the amount they contribute to the pixels of the
final rendering; by increasing the pixel brightness in this way during each iteration, these methods effectively compute a 2D
histogram of the marginal distribution of 𝑓 over pixel coordinates. This is exactly the image to be rendered up to a global
scale factor, which can be recovered using a traditional MC sampling technique. The main difference among these algorithms
is the underlying state space, as well as the employed set of mutation rules.

MLT distinguishes between mutations that change the structure of the path and perturbations that move the vertices by
small distances while preserving the path structure, both using the building blocks of bidirectional path tracing to sample
paths. One of the following operations is randomly selected in each iteration:

1. Bidirectional mutation: This mutation replaces a segment of an existing path with a new segment (possibly of
different length) generated by a random walk strategy. This rule generally has a low acceptance ratio but it is essential
to guarantee ergodicity of the resulting Markov Chain.

2. Lens subpath mutation: The lens subpath mutation is similar to the previous mutation but only replaces the lens
subpath, which is defined as the trailing portion of the light path matching the regular expression [^S]S*E.
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(a) Lens perturbation (b) Caustic perturbation

(c) Multi-chain perturbation (d) Manifold perturbation

Figure 7: MLT operates on top of path space, which permits the use of a variety of mutation rules that are motivated by
important physical scattering effects. The top row illustrates ones that are useful when rendering a scene involving a glass
object on top of a diffuse table. The bottom row is the swimming pool example from Figure 6. In each example, the original
path is black, and the proposal is highlighted in blue.

3. Lens perturbation: This transition rule shown in Figure 7a only perturbs the lens subpath rather than regenerating
it from scratch. In the example, it slightly rotates the outgoing ray at the camera and propagates it until the first
non-specular material is encountered. It then attempts to create a connection (dashed line) to the unchanged remainder
of the path.

4. Caustic perturbation: The caustic perturbation (Figure 7b) works just like the lens perturbation, except that it
proceeds in reverse starting at the light source. It is well-suited for rendering caustics that are directly observed by the
camera.

5. Multi-chain perturbation: This transition rule (Figure 7c) is used when there are multiple separated specular
interactions, e.g., in the swimming pool example encountered before. After an initial lens perturbation, a cascade of
additional perturbations follows until a connection to the remainder of the path can finally be established.

The main downside of MLT is the severe effort needed to implement this method: several of the mutation and perturbation
rules (including their associated proposal densities) are challenging to reproduce. Another problem is that a wide range of
different light paths generally contribute to the output image. The MLT perturbations are designed to deal with specific types
of light paths, but it can be difficult to foresee every kind in order to craft a suitable set of perturbation rules. In practice, the
included set is insufficient.

4 MCMC in optimization
Stochastic gradient descent (SGD) methods are primarily used to optimize functions, particularly in training machine learning
models where the objective is to minimize a loss function. SGD shares similarities with MCMC sampling methods in their
iterative nature, especially in the context of Bayesian inference and machine learning [Chen et al., 2016]. In this part, we will
lay down the similarites between both SGD and MCMC methods and review SGD algorithms driven by MCMC methods.

4.1 Bayesian inference
Bayesian inference is a method of statistical inference in which Bayes’ theorem is used to update the probability of a
hypothesis as more evidence or data becomes available. It provides a principled way to combine prior knowledge (beliefs
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about parameters) with new data to make probabilistic conclusions about uncertain parameters or models. The foundations
of Bayesian inference is Bayes’ theorem, which is expressed as:

𝑝 (𝜃 |data) = 𝑝 (data|𝜃 )𝑝 (𝜃 )
𝑝 (data) (17)

where

• 𝑝 (𝜃 |data) is the posterior probability of the parameter 𝜃 given the observed data. This is what we want to infer. The
posterior distribution combines the prior and likelihood to give an updated probability distribution of the parameter 𝜃
after observing the data.

• 𝑝 (data|𝜃 ) is the likelihood, which represents how likely the observed data is under a given parameter 𝜃 . The likelihood
represents the probability of observing the data given a particular value of 𝜃 . It is derived from the model and the
observed data

• 𝑝 (𝜃 ) is the prior probability, which reflects the prior belief about the parameter 𝜃 before seeing the data. It allows you
to incorporate existing knowledge or assumptions about the parameter.

• 𝑝 (data) is the evidence (or marginal likelihood), which normalizes the posterior and ensures that the probabilities
sum to 1. The evidence term is the probability of observing the data under all possible values of 𝜃 . It is often treated as
a normalizing constant and doesn’t affect the inference about 𝜃 .

Bayesian inference provides a powerful framework for updating beliefs based on new data, handling uncertainty, and making
probabilistic predictions. By leveraging both prior knowledge and data, it offers a flexible and rigorous approach to statistical
inference.

4.2 Stochastic gradient descent (SGD)
SGD is an optimization algorithm that iteratively updates model parameters to minimize a loss function. It uses the gradient
of the loss function with respect to the model parameters to guide the updates. In each iteration, a mini-batch of data is used
to compute an approximate gradient, making the process stochastic. The update rule for SGD is:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃L(𝜃𝑡 ) (18)

where 𝜃𝑡 are the model parameters at iteration 𝑡 , 𝜂 is the learning rate, ∇𝜃L(𝜃𝑡 ) is the gradient of the loss function L with
respect to 𝜃𝑡 .

SGD is primarily used for deterministic optimization, It is efficient for large-scale machine learning problems due to its
stochastic nature. However, it is prone to getting stuck in local minima or saddle points.

4.3 Stochastic Gradient Langevin Dynamics (SGLD)
SGLD is an algorithm that combines elements of SGD with Langevin dynamics [Welling and Teh, 2011], introducing a noise
term to the parameter updates. This addition allows SGLD to perform both optimization and sampling from the posterior
distribution in Bayesian inference. The update rule for SGLD is very similar to the SGD update rule from Eq. (18) and is given
by:

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

2∇𝜃L(𝜃𝑡 ) +
√
𝜂𝜉𝑡 (19)

where 𝜃𝑡 are the model parameters at iteration 𝑡 , 𝜂 is the learning rate, ∇𝜃L(𝜃𝑡 ) is the gradient of the loss function L with
respect to 𝜃𝑡 and 𝜉𝑡 is the noise term, typically drawn from a standard normal distribution N(0, 𝐼 ).
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1 # Code snippet for SGLD update rule
2 import numpy as np
3

4 # Loss function and its gradient
5 def loss_function(theta):
6 return 0.5 * np.sum(theta**2)
7

8 def gradient_loss_function(theta):
9 return theta
10

11 # SGLD update rule
12 def sgld_update(theta, eta):
13 grad = gradient_loss_function(theta)
14 noise = np.random.normal(size=theta.shape)
15 theta = theta - 0.5 * eta * grad + np.sqrt(eta) * noise
16 return theta
17

18 # Parameters
19 theta = np.array([2.0, -3.0]) # Initial parameters
20 eta = 0.01 # Learning rate
21 num_iterations = 1000
22

23 # Perform SGLD
24 samples = []
25 for _ in range(num_iterations):
26 theta = sgld_update(theta, eta)
27 samples.append(theta.copy())
28

29 # Convert samples to numpy array for analysis
30 samples = np.array(samples)
31

32 # Plot the samples
33 import matplotlib.pyplot as plt
34

35 plt.plot(samples[:, 0], samples[:, 1], 'o-', markersize=2)
36 plt.title('SGLD Samples')
37 plt.xlabel('Theta[0]')
38 plt.ylabel('Theta[1]')
39 plt.show()
40

SGD vs. SGLD. There are some key differences:

• Objective: SGD aims to find a point estimate that minimizes the loss function, whereas, SGLD aims to sample from the
posterior distribution of the model parameters, making it suitable for Bayesian inference.

• Update rule: SGD updates parameters using the gradient of the loss function with respect to the parameters. SGLD, on
the other hand, Updates parameters using the gradient of the loss function and adds a noise term to ensure stochasticity.

• Noise term: SGD does not include an explicit noise term in the update rule. SGLD includes a noise term, which helps
in exploring the parameter space more thoroughly and escaping local minima.

• Applications: SGD is used for deterministic optimization tasks, such as training neural networks, whereas, SGLD is
used for probabilistic modeling and Bayesian inference, where sampling from the posterior distribution is required.

4.4 Bayesian inference using SGD
Performing Bayesian inference using Stochastic Gradient Descent (SGD) combines the ideas from Bayesian statistics with
optimization techniques like SGD. The general idea is to approximate the posterior distribution over model parameters using
gradient-based methods. This approach is particularly useful when exact Bayesian inference (like through Markov Chain
Monte Carlo) is computationally infeasible for large datasets or complex models.

MaximumA Posteriori (MAP) Estimation using SGD MAP estimation is a point estimate method in Bayesian inference.
Instead of finding the full posterior distribution, we find the parameter value that maximizes the posterior distribution. The
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Table 2: Commonly used notations throughout the document.
Notation Description

x, z input (observed) data, latent space variables
𝑝 (x) distribution of the observed data or likelihood of all observed x or the target distribution
log𝑝 (x) evidence or log-likelihood of the data
𝑞 (z |x) ground truth posterior (encoder) that defines the distribution of latent variables z over observed samples x

𝑞𝜙 (z |x) variational posterior (encoder) distribution with parameters 𝜙 that we seek to optimize to match the ground truth 𝑞 (z |x)
𝑝𝜃 (x |z) decoder distribution parameterized by learnable parameters 𝜃

MAP objective is:

𝜃𝑀𝐴𝑃 = arg max
𝜃
𝑝 (𝜃 |data) = arg max

𝜃
𝑝 (data|𝜃 )𝑝 (𝜃 ) (20)

Taking the logarithm of the posterior (since log is a monotonic function), this becomes:

𝜃𝑀𝐴𝑃 = arg max
𝜃
(log𝑝 (data|𝜃 ) + log𝑝 (𝜃 )) (21)

Here, SGD can be used to optimize the MAP objective by computing gradients with respect to 𝜃 , where log𝑝 (data) is the
likelihood (often minimized using SGD), and 𝑝 (𝜃 ) is the prior (often treated as a regularization term, like L2 regularization).

To implement this optimization, we start with an initial guess for 𝜃 . Then we use SGD Eq. (18) to update the parameters
by following the gradient of the posterior:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃 (− log𝑝 (data|𝜃 ) − log𝑝 (𝜃 )) (22)

where 𝜂 is the learning rate.

Using SGLD. SGLD adds noise to the gradient updates from SGD to simulate Langevin dynamics, which helps approximate
the posterior distribution instead of just finding a point estimate. The update rule for SGLD from Eq. (19) is:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃 (− log𝑝 (data|𝜃 ) − log𝑝 (𝜃 )) + √𝜂𝜉𝑡 (23)

where 𝜉𝑡 is a Gaussian noise with zero mean and unit variance. The injected noise ensures that the parameter updates sample
from the posterior distribution rather than simply converging to a single point (as in MAP estimation). Over time, this
stochastic process approximates the posterior distribution. In the next section, we look at Bayesian (variational) inference
using neural networks. In this method, you approximate the posterior distribution with a simpler distribution (often Gaussian)
and minimize the divergence between the true posterior and the approximate one.

5 MCMC in generative modeling
Diffusion models [Sohl-Dickstein et al., 2015] are the very backbone of modern generative AI pipelines and they are built on
the very foundations of MCMC methods. In this part, we start by showing how MCMC can be seen as a primitive generative
model. We briefly introduce evidence lower bound (ELBO), variational autoencoders (VAEs) and Hierarchical variational
autoencoders (HVAEs) that lays the foundations for the variational diffusion models. We then introduce energy-based models
which are known to be very flexible We then introduce score-based diffusion models that are driven by the SDEs [Song et al.,
2021]. During this part, we will walk through the skeleton code that will result in a fully functional diffusion model for visual
content creation.

5.1 From variatonal autoencoders to variational diffusion models
The keyword variational is used in mathematical analysis when we deal with maximizing or minizming functionals. Our
focus is likelihood-based generative models where the idea is to learn a model that maximizes the likelihood 𝑝 (x) of all
observed data x. We can imagine a joint distribution 𝑝 (x, z) that models the joint probability of the observed samples and
their latent variables. There are two ways we can manipulate this joint distribution to recover the likelihood of the observed
data distribution 𝑝 (x); we can explicitly marginalize the latent variable z:

𝑝 (x) =
∫

𝑝 (x, z)𝑑z (24)
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which requires integrating over all latent variables z or, we can use the chain rule of the probability;

𝑝 (x) = 𝑝 (x, z)
𝑝 (z|x) (25)

which requires access to the ground truth encoder 𝑞(z|x). Both methods of maximizing the likelihood are intractable when
using complex models.

5.1.1 Evidence lower bound (ELBO).

Instead of focusing on directly maximizing the likelihood 𝑝 (x), we can work with the evidence; the log-likelihood log𝑝 (x).
The ELBO represents the lower bound on the evidence. Let us build this lower bound in few steps. By definition ELBO is
given by:

E𝑞𝜙 (z |x)

[
log 𝑝 (x, z)

𝑞𝜙 (z|x)

]
(26)

Looking at Eqs. (25) and (26), we can derive the evidence in the form (see Luo [2022] for details):

log𝑝 (x)︸   ︷︷   ︸
Evidence

= E𝑞𝜙 (z |x)

[
log 𝑝 (x, z)

𝑞𝜙 (z|x)

]
︸                       ︷︷                       ︸

ELBO

+𝐷𝐾𝐿 (𝑞𝜙 (z|x) | |𝑞(z|x))︸                      ︷︷                      ︸
Distance

(27)

where 𝐷𝐾𝐿 (𝑞𝜙 (z|x) | |𝑞(z|x)) is a distance metric. This distance metric is the KL-divergence between the ground truth 𝑞(z|x)
and our flexible approximate variational distribution 𝑞𝜙 with parameters 𝜙 that we seek to optimize. In other words, 𝑞𝜙 seeks
to approximate the true posterior 𝑞(z|x).

Since the second summand on the RHS of Eq. (27) is a distance metric, it is always positive. Therefore, the evidence is
always higher than the ELBO term. In short, the evidence has a direct relationship wrt the ELBO term:

log𝑝 (x) ≥ E𝑞𝜙 (z |x)
[
log 𝑝 (x, z)

𝑞𝜙 (z|x)

]
(28)

which implies that the ELBO is the lower bound of the evidence.
Note that the likelihood 𝑝 (x) of our data—and therefore our evidence term log𝑝 (x)—is always a constant wrt 𝜙 , as it

is computed by marginalizing out all latents z from the joint distribution 𝑝 (x, z), thereby not depending on 𝜙 whatsoever.
Consequently, maximizing the ELBO would automatically result in minimizing the KL-divergence term on the RHS of Eq. (27),
making 𝑞𝜙 (z|x) better approximates the true posterior 𝑞(z|x). Additionally, once trained, the ELBO can be used to estimate
the likelihood of observed or generated data as well, since it is learned to approximate the model evidence log𝑝 (x).

5.1.2 Variational autoencoders (VAEs).

An autoencoder is a type of neural network used to learn efficient codings of input data. It consists of two parts:
an encoder 𝑞𝜙 (z|x) that maps the input data x to a latent space z, and a decoder 𝑝𝜃 (x|z) that maps
the latent space back to the input data space. VAEs effectively maximizes the ELBO Eq. (26). The
aproach is variational as we optimizes our approximate posterior 𝑞𝜙 by maximizing the ELBO.
Mathematically speaking:

E𝑞𝜙 (z |x)

[
log 𝑝 (x, z)

𝑞𝜙 (z|x)

]
= E𝑞𝜙 (z |x)

[
log 𝑝𝜃 (x|z)𝑝 (z)

𝑞𝜙 (z|x)

]
using the Chain rule of Probability (29)

= E𝑞𝜙 (z |x) [log𝑝𝜃 (x|z)] + E𝑞𝜙 (z |x)
[
log 𝑝 (z)

𝑞𝜙 (z|x)

]
(30)

= E𝑞𝜙 (z |x) [log𝑝𝜃 (x|z)]︸                     ︷︷                     ︸
reconstruction term

−𝐷𝐾𝐿 (𝑞𝜙 (z|x) | |𝑝 (z))︸                   ︷︷                   ︸
prior matching term

(31)

In this case, we learn an intermediate bottleneck distribution 𝑞𝜙 (z|x) that can be treated as an encoder ; it transforms inputs
into a distribution over possible latents. Simultaneously, we learn a deterministic function 𝑝𝜃 (x|z) to convert a given latent
vector z into an observation x, which can be interpreted as a decoder. The 𝑝 (z) in the prior matching term represents a known
prior which is usually approximated to be a normal Gaussian distribution.
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5.1.3 Hiearchical VAEs (HVAEs).

HVAEs extend the concept of VAEs by incorporating multiple levels of latent variables, creating a hierarchy. This hierarchical
structure allows HVAEs to model more complex data distributions and capture more intricate dependencies within the data.
A standard VAE has a single layer of latent variables. The encoder maps the input data x to a latent representation z, and the

...

Figure 8: A Markovian Hiearchical VAE model with𝑇 latent steps. The observed data x goes through multiple levels of latent
encodings z1, . . . z𝑇 . In the generation process, each latent variable z𝑡 only depends on its previous level latent variable z𝑡−1.

decoder reconstructs x from z. HVAEs introduce multiple layers of latent variables, organized hierarchically. The encoder
produces a series of latent variables z1, . . . , z𝑇 at different levels. Each layer can capture different levels of abstraction, with
higher layers capturing more abstract features and lower layers capturing more detailed features. However, this increased
expressiveness comes with added complexity in training and model architecture design. In this course, we focus only on
Markovian HVAEs where the the generation process at each latent variable z𝑡 only depends on its previous level latent
variable z𝑡−1.

5.1.4 Variational diffusion models.

The easiest way to think of a Variational Diffusion Model (VDM) [Luo, 2022, Sohl-Dickstein et al., 2015, Ho et al., 2020,
Kingma et al., 2023] is simply as a Markovian Hierarchical Variational Autoencoder with three key restrictions:

• The latent dimension is exactly equal to the data dimension

• The structure of the latent encoder at each timestep is not learned; it is pre-defined as a linear Gaussian model. In
other words, it is a Gaussian distribution centered around the output of the previous timestep.

• The Gaussian parameters of the latent encoders vary over time in such a way that the distribution of the latent at final
timestep 𝑇 is a standard Gaussian.

...

Figure 9: A variational diffusion model adds linear Gaussian noise at each time step, getting a fully Gaussian noise after 𝑇
latent steps.

Note that our encoder distributions 𝑞𝜙 (z𝑡 |z𝑡−1) in Fig. 9 are no longer parameterized by 𝜙 , as they are completely modeled
as Gaussians with defined mean and variance parameters at each timestep. Therefore, in a VDM, we are only interested in
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learning conditionals 𝑝𝜃 (z𝑡−1 |z𝑡 ), so that we can simulate new data. After optimizing the VDM, the sampling procedure is as
simple as sampling Gaussian noise from 𝑝 (z𝑇 ) and iteratively running the denoising transitions 𝑝𝜃 (z𝑡−1 |z𝑡 ) for 𝑇 steps to
generate a novel x.

Connecting diffusion models with ELBO. Since in VDMs, the latent variables z has the same dimensionality as the
input, we represent them as x𝑖 with the input data sample as x0. We can now resume from the log likelihood relation with
ELBO as (see [Luo, 2022]):

log𝑝 (x) ≥ E𝑞 (x1:𝑇 |x0 )

[
𝑙𝑜𝑔

𝑝 (x0:𝑇 )
𝑞(x1:𝑇 |x0)

]
(32)

= E𝑞 (x1 |x0 ) [log𝑝𝜃 (x0 |x1)]︸                        ︷︷                        ︸
reconstruction term

−𝐷𝐾𝐿 (𝑞(x𝑇 |x0) | |𝑝 (x𝑇 ))︸                       ︷︷                       ︸
prior matching term

−
𝑇∑︁
𝑡=2
E𝑞 (x𝑡 |x0 ) [𝐷𝐾𝐿 (𝑞(x𝑡−1 |x𝑡 , x0) | | 𝑝𝜃 (x𝑡−1 |x𝑡 ))] .︸                                                       ︷︷                                                       ︸

denoising matching term

(33)

Each term in this formulation has an elegant interpretation:

1. The first term can be interpreted as a reconstruction term and can be approximated and optimized using a Monte Carlo
estimate

2. The second term is a distance metric that tells how close the noisy version of the input x0 to the standard Gaussian
prior 𝑝 (x𝑇 ).

While HVAEs and diffusion models are distinct in their methodologies and approaches to generative modeling, they
share the common goal of learning complex data distributions. Their differences in hierarchical structures and generation
processes provide unique strengths that, when combined, could lead to more advanced and capable generative models.

5.2 Energy-based models (EBM)
Another similar approach is energy-based modeling, in which a distribution is learned as an
arbitrarily flexible energy function that is then normalized. EBMs are much less restrictive in
functional form: instead of specifying a normalized probability, they only specify an unnormalized
non-negatvive function of the form:

𝑝𝜃 (x) =
exp(𝑓𝜃 (x))

𝑍𝜃
where 𝑍𝜃 =

∫
exp(𝑓𝜃 (x))𝑑x (34)

denotes the normalizing constant to ensure
∫
𝑝𝜃 (x)𝑑x = 1. 𝑓𝜃 (the negative of the function −𝑓𝜃 is the energy) is a nonlinear

regression function with parameters 𝜃 . 𝑍𝜃 is constant wrt to x and depends only on the parameters 𝜃 . One way to learn such
a distribution is by maximizing the likelihood. However, this requires computing the normalization constant 𝑍𝜃 which is
intractable for complex energy functions.

With EBMs, we can side step such intractable computation by estimating the gradient of the log-likelihood using MCMC
methods, which implicitly allows likelihood maximization with gradient ascent [Younes, 2000]. Another important property
of EBMs is that even though we cannot compute the likelihood of a sample, we can report the relative importance of any
sample. This could be beneficial for many applications like object recognition, sequence labeling or image restoration. Given
two samples x and x′, the relative importance is the ratio:

𝑝𝜃 (x)
𝑝𝜃 (x′)

=
exp(𝑓𝜃 (x))/𝑍𝜃

exp(−𝑓𝜃 (x′))/𝑍𝜃
=

exp(𝑓𝜃 (x))
exp(−𝑓𝜃 (x′))

= exp(𝑓𝜃 (x) − 𝑓𝜃 (x′)) . (35)

Since the normalizing constant cancels out in the above ratio, we only need to deal with the exp 𝑓𝜃 (·) terms which are
tractable. In the next section, we see how MCMC methods can be used to train and sample from EBMs.

Contrastive Divergence algorithm. Intuitively, one can maximize the likelihood (34) by increasing the numerator and
decreasing the denominator. The contrastive divergence algorithm Hinton [2002] works on this contrastive idea. To maximize

19



the log-likelihood, we optimize the parameters 𝜃 . This requires computing the gradient wrt 𝜃 which has the form:

∇𝜃 log𝑝𝜃 (x) = ∇𝜃 log(exp(𝑓𝜃 (x))/𝑍𝜃 ) = ∇𝜃 𝑓𝜃 (x) − ∇𝜃 log𝑍𝜃 (36)

= ∇𝜃 𝑓𝜃 (x) −
∇𝜃𝑍𝜃
𝑍𝜃

(37)

= 𝑓𝜃 (x) −
1
𝑍𝜃
∇𝜃

∫
exp(𝑓𝜃 (x))𝑑x (38)

= 𝑓𝜃 (x) −
1
𝑍𝜃

∫
exp(𝑓𝜃 (x))∇𝜃 𝑓𝜃 (x)𝑑x (39)

= 𝑓𝜃 (x) −
∫ exp(𝑓𝜃 (x))

𝑍𝜃
∇𝜃 𝑓𝜃 (x)𝑑x← the ratio is a pdf 𝑝𝜃 (x) (40)

= 𝑓𝜃 (x) − Ex [∇𝜃 𝑓𝜃 (x)] (41)
= 𝑓𝜃 (x) − ∇𝜃 𝑓𝜃 (xsample) ← one-sample estimate (42)

The expectation term in Eq. (41) can be approximated by Monte Carlo estimation. Equation (42) is a one sample estimate of
this expectation. One can sample xsample ∼ exp 𝑓 (xsample)/𝑍𝜃 from the model 𝑝𝜃 and take step in the direction given by the
gradient ∇ exp(𝑓𝜃 (x) − 𝑓𝜃 (xsample)) making training data more likely than a typical sample from the model. But the main
question remains, how do we sample xsample? This is where MCMC methods comes into play.

5.2.1 MCMC methods for sampling from EBMs

EBMs are extremely flexible in the way 𝑓𝜃 can be chosen. There is practically no restriction on the choice of 𝑓𝜃 . This means,
you can plug-in whatever architecture you want to model the data. However, the problem is that sampling from 𝑝𝜃 (x) is very
hard. Generating new samples could be computationally very expensive from an EBM. The reason is that evaluating and
optimizing likelihood 𝑝𝜃 (x) is hard (i.e., learning is hard). Even if you train your model 𝑝𝜃 , sampling would require finding
the normalization constant 𝑍𝜃 , which is intractable. This is because fundamentally the numerical cost to compute 𝑍𝜃 scales
exponentially with the number of dimensions of x.

To optimize the log-likelihood form from Eq. (42), we would like to pick samples xsample that represents the underlying
data distribution. This can be achieved by using iterative algorithms. At each iteration, we can perform MCMC iterative
sampling to obtain the sample xsample which can be used to evaluate Eq. (42). We discuss two important MCMC algorithms
below.

Metropolis-Hastings MCMC We can use Metropolis-Hastings MCMC sampling algorithm which is an iterative method:

• Initialize a random sample x0 at 𝑡 = 0

• Repeat the process for 𝑡 = 0, 1, 2, · · · ,𝑇 − 1
x′ = x𝑡 + noise
If 𝑓 (x′) > 𝑓 (x𝑡 ) then x𝑡+1 = x′

else let 𝑓 (x𝑡+1) = x′ with probability exp(𝑓𝜃 (x𝑡 ) − 𝑓𝜃 (x′))

Here the noise term could be any perturbation that can be added to the data sample. Note that, unlike standard MH
algorithm—where the samples rejected if they fall below the accepted probability—we accept samples which have lower
probability than the acceptance ratio. This is because we want to keep sampling the space. We simply ensure tehe sample is
accepted with the lower probaility. In theory, MCMC sampling works but it can take quite a long time to converge.

Unadjusted Langevin MCMC Slightly better version of MCMC sampling is using Langevin dynamics. Sampling using
the unadjusted Langevin MCMC algorithm (ULA) works as follows:

• Initialize a random sample x0 ∼ 𝑝 (x) at 𝑡 = 0

• Repeat for 𝑡 = 0, 1, 2, . . . ,𝑇 − 1
z𝑡 ∼ N(0, 𝐼 )
x𝑡+1 = x𝑡 + 𝜖∇𝑥 log𝑝𝜃 (x) |x=x𝑡 +

√
2𝜖z𝑡
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Here 𝜖 is the step size. Note that ULA has no rejection step. The samples are perturbed with a noise z𝑡 and the new sample
is accepted. However, in theory this algorithm can only converge if the step size 𝜖 is small. But this can slow down the
convergence dramatically. At least, the perturbation is informed thanks to the ∇𝑥𝑝𝜃 (x) |x=x𝑡 term. In MH algorithm, the noise
added could be any random perturbation. ULA has many noticeable properties:

• x𝑇 converges to a sample from 𝑝𝜃 (x) as 𝑇 →∞ and the step size 𝜖 → 0.

• ULAhas better convergence compared toMHMCMCbecause now the exploration is informed thanks to the∇x log𝑝𝜃 (x)
term.

• ∇x log𝑝𝜃 (x) = ∇𝑥 𝑓𝜃 (x) for continuous energy models, which implies that the normalization term is completely gone.
There are still issues with this approach. Sampling converges slowly in higher dimensional spaces and is thus very expensive,
yet we need sampling in every iteration in contrastive divergence. For example, every time we need to sample to solve Eq. (42),
we need to run (say 1000) large number of iterations of an MCMC algorithm to generate a valid sample that follows the
underlying distribution 𝑝𝜃 .Yet, we need sampling at each iteration in contrastive divergence. Gao et al. [2021] propose to train
energy-based models by diffusion recovery likelihood where long-run MCMC samples from the conditional distributions do
not diverge and still represent realistic images. This allows them to accurately estimate the normalized density of data even
for high-dimensional datasets.

Training without sampling. To avoid such expensive sampling procedures one can use training methods that does
not require sampling. Score matching [Hyvärinen, 2005, Song and Ermon, 2020a, Song et al., 2019] and noise contrast
estimation [Gutmann and Hyvärinen, 2010] algorithms are such methods that does not require sampling for training. We
will not delve much into these methods. However, we will briefly looking score-based models in the next section as they
require sampling to generate new samples where MCMC methods shine again.

5.3 Sampling score-based generative models
So far we have been talking about energy-based models which suffer from expensive sampling during the training stage.
Score-based models can help avoid this sampling step altogether from the training stage. Score-based generative models are
highly related to EBMs; instead of learning to model the energy function itself, they learn the score of the energy-based
model as a neural network.

Starting from Eq. (34):

𝑝𝜃 (x) =
exp 𝑓𝜃 (x)

𝑍𝜃
(43)

log𝑝𝜃 (x) = 𝑓𝜃 (x) − log𝑍𝜃 (44)
∇x log𝑝𝜃 (x) = ∇x 𝑓𝜃 (x) − ∇x log𝑍𝜃︸     ︷︷     ︸

=0

(45)

∇x log𝑝𝜃 (x) = ∇x 𝑓𝜃 (x) = s𝜃 (x) (46)

Taking the gradient of the log-likelihood wrt to x renders the summand on the RHS to zero since the normalization constant
(aka the partion function) 𝑍𝜃 only depends on 𝜃 . The s𝜃 (x) is the score function.

The score s𝜃 (x) provides an alternative view of the original function where you are looking at things from the perspective
of the gradient instead of the perspective of the likelihood itself. The key observation here is that the score is independent of
the normalization constant (aka the partion function) 𝑍𝜃 .

What does the score function represent? For every x, taking the gradient of its log likelihood with respect to x essentially
describes what direction in data space to move in order to further increase its likelihood. Intuitively, the score function
defines a vector field over the entire data space, pointing towards the modes.

Some efficient MCMCmethods, such as Langevin MCMC or Hamiltonian MC Radford [2011], make use of the fact that the
gradient of the log-probability wrt x (a.k.a score) is equal to the (negative) gradient of the energy, therefore easy to calculate.

By learning the score function of the true data distribution, we can generate samples by starting at any arbitrary point in
the same space and iteratively following the score until a mode is reached. This sampling procedure is known as Langevin
dynamics, and is mathematically described as:

x𝑖+1 = x𝑖 + 𝑐∇ log𝑝 (x𝑖 ) +
√

2𝑐𝜖 (47)

Collectively, learning to represent a distribution as a score function and using it to generate samples through MCMC
techniques, such as Langevin dynamics, is known as Score-based Generative Modeling [Song et al., 2021, Song and Ermon,
2020a,b].
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6 Conclusion
MCMC methods offer a unified framework for sampling from complex probability distributions, addressing a common
challenge across the domains of rendering, generative modeling, and optimization. Significant research efforts have been
dedicated to identifying the conceptual bridge between these interconnected fields.

However, there are a number of challenges that need to be addressed. For example, the chain constructed by the Ordinary
Metropolis Hastings algorithm is not only invariant, but even reversible with respect to the target distribution. This invariance
property, which is necessary for usage in Monte Carlo sampling, highly restricts our choice of processes, which we can use
for state space exploration. That is, even when we have a process at hand, which is able to explore our given state space in a
favorable manner, we cannot use it for Monte Carlo sampling, unless it is invariant. Reversibility is an even stronger condition.
While it yields certain useful spectral properties of the process, it also slows down mixing and convergence to equilibrium.
Reversible processes show backtracking behavior where the processes frequently revisit previously visited states before
reaching unexplored areas, thereby, slowing down the convergence. Another challenge with designing MCMC algorithms is
that the highly correlated Markov chains can cause excessive local exploration which in rendering are visible as overly bright
pixels. To avoid this issue, MCMC algorithms should discover other contributing areas by globally discovering the paths
away from the current path. All existing algorithms [Veach and Guibas, 1997, Luan et al., 2020, Li et al., 2015, Pantaleoni,
2017, Bitterli et al., 2017, Bitterli and Jarosz, 2019] are based Metropolis-Hastings which inherits its slower convergence due
to the reversibility property. Recently, Holl et al. [2024] introduced a continuous time Markov framework that is based on the
restore algorithm [Wang et al., 2021]. Their framework adjusts an arbitrary Markov chain for Monte Carlo integration to
the graphics community. Especially, they introduced a rejection-free and target density sensitive way to deal with global
discovery. They generalized the idea presented in Wang et al. [2021] and extended it for light transport rendering problems.
Given the surge in generative models, this work provides a solid foundational framework that can be leveraged to establish
direct connections between diffusion models in generative modeling, physically based rendering and SGD-based optimization
algorithms.

We believe that this course will equip participants with the knowledge to bridge the gaps between physically based
rendering and vision-based generative modeling more effectively. We are excited about how understanding MCMC will
enable participants to recognize the common probabilistic foundation underlying diverse applications. This insight will
enhance their ability to apply learned concepts across different domains.
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A Code snippets

1 # Brownian motion
2 import numpy as np
3 import matplotlib.pyplot as plt
4

5 # Function to simulate Brownian motion
6 def brownian_motion(num_steps, step_size):
7 # Initialize position at the origin
8 position = np.zeros(2)
9 positions = [position.copy()]
10

11 # Iterate through each step
12 for _ in range(num_steps):
13 # Generate random displacement for each dimension
14 displacement = np.random.normal(0, step_size, size=2)
15 # Update position
16 position += displacement
17 # Store the updated position
18 positions.append(position.copy())
19

20 return np.array(positions)
21

22 # Number of steps and step size
23 num_steps = 1000
24 step_size = 0.1
25

26 # Simulate Brownian motion
27 positions = brownian_motion(num_steps, step_size)
28

29 # Plot the Brownian motion trajectory
30 plt.plot(positions[:, 0], positions[:, 1], lw=1)
31 plt.title('2D Brownian Motion')
32 plt.xlabel('X')
33 plt.ylabel('Y')
34 plt.show()
35
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1 # Unadjusted Langevin Monte Carlo sampling
2 import numpy as np
3 import matplotlib.pyplot as plt
4

5 def target_log_prob(x):
6 # Example target distribution: standard normal distribution
7

8 def grad_target_log_prob(x):
9 # Gradient of the log of the target distribution: standard normal distribution
10 return -x
11

12 def langevin_monte_carlo(num_samples, dim, step_size, burn_in):
13 samples = np.zeros((num_samples, dim))
14 current_sample = np.random.randn(dim) # Initialize with a random sample
15

16 for i in range(num_samples + burn_in):
17 grad_log_prob = grad_target_log_prob(current_sample)
18 noise = np.random.randn(dim)
19 next_sample = current_sample + 0.5 * step_size * grad_log_prob + np.sqrt(step_size) * noise
20

21 # Accept the next sample
22 current_sample = next_sample
23

24 if i >= burn_in:
25 samples[i - burn_in] = current_sample
26

27 return samples
28

29 # Parameters
30 num_samples = 10000 # Number of samples to generate
31 dim = 2 # Dimension of the target distribution
32 step_size = 0.1 # Step size for the Langevin dynamics
33 burn_in = 100 # Number of burn-in steps
34

35 # Generate samples
36 samples = langevin_monte_carlo(num_samples, dim, step_size, burn_in)
37

38

39 # Create subplots
40 fig, axs = plt.subplots(1, 1, figsize=(5, 5))
41

42 # Plot Brownian motion trajectory
43 # axs[0].plot(positions[:, 0], positions[:, 1], lw=1)
44 axs.scatter(samples[:, 0], samples[:, 1], s=0.5)
45 axs.set_title('LMC')
46 axs.set_xlabel('X')
47 axs.set_ylabel('Y')
48 axs.set_xlim(-3, 3)
49 axs.set_ylim(-3, 3)
50 # axs.grid(True)
51 axs.set_aspect(1)
52

53 plt.tight_layout()
54 plt.show()
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1 # Unadjusted Hamiltonian Monte Carlo
2 import numpy as np
3 import matplotlib.pyplot as plt
4

5 # Define the target distribution (posterior) - For example, a Gaussian distribution
6 def log_prob(theta):
7 """Returns the log of the target distribution (up to a constant)"""
8 return -0.5 * np.sum(theta ** 2)
9

10 # Gradient of the log-probability
11 def grad_log_prob(theta):
12 """Returns the gradient of the log-probability"""
13 return -theta
14

15 # Hamiltonian Monte Carlo Sampling
16 def hmc(log_prob, grad_log_prob, initial_theta, n_samples, step_size, n_leapfrog):
17 """
18 log_prob: function to compute log-probability of the target distribution
19 grad_log_prob: function to compute the gradient of the log-probability
20 initial_theta: initial value of parameters (starting point)
21 n_samples: number of samples to generate
22 step_size: step size for the leapfrog integrator
23 n_leapfrog: number of leapfrog steps in the simulation
24 """
25 samples = []
26 current_theta = initial_theta
27 current_log_prob = log_prob(current_theta)
28

29 for _ in range(n_samples):
30 # Sample a random momentum (p) from a normal distribution
31 current_p = np.random.normal(0, 1, size=current_theta.shape)
32 initial_p = current_p
33

34 # Hamiltonian dynamics step (Leapfrog integrator)
35 theta = np.copy(current_theta)
36 p = np.copy(current_p)
37

38 # Half-step update of momentum
39 p -= 0.5 * step_size * grad_log_prob(theta)
40

41 # Full-step updates of position (theta) and momentum (p)
42 for _ in range(n_leapfrog):
43 # Update theta
44 theta += step_size * p
45

46 # Update momentum (except the last iteration)
47 if _ < n_leapfrog - 1:
48 p -= step_size * grad_log_prob(theta)
49

50 # Final half-step update of momentum
51 p -= 0.5 * step_size * grad_log_prob(theta)
52

53 # Negate the momentum to make the proposal symmetric
54 p = -p
55

56 # Compute Hamiltonian at the start and end of the trajectory
57 current_H = -current_log_prob + 0.5 * np.sum(initial_p ** 2)
58 proposed_H = -log_prob(theta) + 0.5 * np.sum(p ** 2)
59

60 # Metropolis acceptance criterion
61 if np.random.uniform(0, 1) < np.exp(current_H - proposed_H):
62 current_theta = theta
63 current_log_prob = log_prob(current_theta)
64

65 samples.append(current_theta)
66

67 return np.array(samples)
68

69 # Generate samples using HMC
70 samples = hmc(log_prob, grad_log_prob, initial_theta, n_samples, step_size, n_leapfrog)
71
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