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Stochastic Gradient Descent (SGD)

Global discovery

Local exploration

- Explore the whole manifold

- Once the region is detected, reach the local minima 
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What kind of generative models are available?

• Energy-based models  

• Score-based models 

• Diffusion models 
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Task: Composing an image

• Compositional generation with Energy-Based Diffusion Models and MCMC [Du et 
al. 2024]

• It’s the sampler and not the architecture which needs to be changed!

• Energy-based models are by construction very flexible

• They rely on MCMC sampling

• We will go in details later on!
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MCMC in Rendering

MC Integration / MIS / Limitations
Metropolis light Transport

Markov chain Monte Carlo (MCMC) Methods

Stochastic Differential Equations (SDEs)

Theoretical background

MCMC in Optimization

Stochastic Gradient Descent (SGD)
Stochastic Gradient Langevin Dynamics

Bayesian inference using SGD

MCMC in Generative AI

From VAEs to Diffusion models

Energy-based models (EBMs)

MCMC methods for EBMs

Score-based Generative models
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An arbitrary Markov chain simply wanders in the space

Target distribution

When run long enough, will preserve the underlying distribution (invariance property)

But there is an initial bias!

Markov chain Monte Carlo
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Stochastic Different equations (SDEs)

• When the particles are jiggling, we need 
to model & simulate the forces that induce 
Jiggling (“Langevin dynamics”)
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Simulating Langevin diffusion

Euler-Maruyama method to simulate Langevin diffusion:

Metropolis-adjusted Langevin update (MALA):

is accepted based on the Metropolis-Hastings acceptance prob. 
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256 samples64 samples 1024 samples
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Multiplexed MLT 
[Hachisuka et al. 2014]

Metropolis Light Transport 
[Veach & Guibas 1997]

Primary Sample Space MLT 
[Kelemen et al. 2002]

Manifold Exploration 
[Jakob & Marschner 2012]

Chartered MLT 
[Pantaleoni et al. 2017]

Reversible Jump MLT 
[Bitterli et al. 2017]

Fusing State Spaces 
[Otsu et al. 2017]
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0 1

Interesting properties: 

1. Samples are correlated 

2. Algorithm tends to 
explore local maxima 

3. Can be combined with 
classical MC algorithms
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Hypercube of 
“random numbers”

def mcmc_path_tracer():
    u = [0.5, …, 0.5]
    while !done:
        u’ = perturb(u)
        # Acceptance probability
        a = L(u’) / L(u)
        if rand() < a:
            u = u’
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Multiplexing + Invertible transitions

[Reversible Jump Metropolis Light Transport using Inverse Mappings, Bitterli 2017]



The original Metropolis Light 
Transport Algorithm
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Metropolis Light Transport
[Veach and Guibas 1997]
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An observation in flatland
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Light source Sensor

Mirror

The set of paths undergoing specular 
reflection or refraction is lower in dimension 

than the entire path space.   
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Manifold walking algorithm

121

Basic idea:

while not there yet: 
1. EXTRAPOLATE: Perturb vertices using manifold tangents 
2. PROJECT: re-trace extrapolated path

start

target

extrapolate

project

extrapolate

project
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MCMC for Inverse Rendering

125

[Xu et al. 2024] 
 
Markov-Chain Monte Carlo Sampling of 
Visibility Boundaries for Differentiable 
Rendering




MCMC in Optimization

Stochastic Gradient Descent (SGD)

Stochastic Gradient Langevin Dynamics
Intro to Bayesian statistics
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X ∈ [0,1)x ∼
Sampling

p(x)

Probability density function

𝔼[X] = ∫
∞

−∞
xp(x)dx

Non-negative: p(x) ≥ 0

Normalized pdf: ∫ p(x)dx = 1
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marginal distributions
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zEncoder Decoder

Goal: Compute the posterior distribution  of model parameters (  or )p(z |x) θ z

But computing  is intractable!p(z |x)
- for complex models
- for large datasets

Use         for Bayesian inferenceSGD
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Step size

Gaussian noise

Euler-Maruyama method to simulate Langevin diffusion:

p(x)

Langevin dynamics
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• Goal: How to learn the underlying distribution of data samples?

xi ∼ pdata(x)
i = {1,2,⋯, n}

?

How can we sample from an
unknown data distribution? 
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Generative AI
• Goal: How to learn the underlying distribution of data samples?

xi ∼ pdata(x)

pθ(x)

θ
D(pdata, pθ)

i = {1,2,⋯, n}
?
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Data distribution

p(x)

Normal distribution

= 𝒩(0,1)p(z)

Autoencoder Variational Bayes

Encoder

Decoder



How do we train this auto encoder?
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ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))
Data consistency Regularization

𝒩(μ, σ)

ELBO: KL divergence term
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ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))
Data consistency Regularization

q(z |x) p(z)

—
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ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))⏟L2 ⏟Latent space regularization
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With VAEs: 
Results are good but slightly blurred
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Encoder Decoder
μ
σ μ + σ ⋅ ϵ z

Cons: 

- Model architectures are restricted

- We cannot pick an arbitrary neural network that can take as input data 
samples and output a scalar.

- It has to be a valid PDF 

- In VAEs, we use approximations to circumvent these issues



From VAEs to Diffusion models

Energy-based models (EBMs)
MCMC methods for EBMs

Variational Autoencoders (VAEs)

Score-based Generative models (SBGMs)
MCMC methods for SBGMs

SDE-based diffusion models
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• Stable training 

• Relatively high sample quality

• Very close to diffusion models

• Flexible composition
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Bayesian statistics: Probability density function

192

Xx ∼
Sampling

p(x)

Probability density function

Non-negative: p(x) ≥ 0

Normalized pdf: ∫ p(x)dx = 1

• PDFs are the key building blocks in generative modeling
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Given any function or an arbitrary neural network , we can chose: fθ(x)

Coming up with a non-negative function  is not hardpθ(x)

gθ(x) = fθ(x)2

gθ(x) = exp( fθ(x))

gθ(x) = | fθ(x) |

Non-negative: p(x) ≥ 0
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This property ensures that total volume is fixed: i.e. increasing  guarantees pθ(xtrain)

that  becomes more likely (compared to the rest).xtrain

Normalized pdf: ∫ p(x)dx = 1
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Problem:  is easy, but  might not be normalizedgθ(x) ≥ 0 gθ(x)

For example: Energy-based model

- we assume the following form of gθ(x) = exp fθ(x)
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pθ(x) =
1

Z(θ)
exp( fθ(x)) Z(θ) = ∫ exp( fθ(x))dx

The normalization constant is also called 
a partition function

Why exponential of  ?fθ(x)

Want to capture big variations in the probability, log-space is a natural choice
In statistical physics, these distributions arise under fairly general assumptions 

•  is called the energy, hence the name.−fθ(x)
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log pθ(x) = log [ 1
Z(θ)

exp( fθ(x))]

Z(θ) = ∫ exp( fθ(x))dx

log pθ(x) = log exp( fθ(x)) − log Z(θ)

log pθ(x) = fθ(x) − log Z(θ)

pθ(x) =
1

Z(θ)
exp( fθ(x))

This term is called the log likelihood
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Z(θ) = ∫ exp( fθ(x))dxlog pθ(x) = fθ(x) − log Z(θ)

To train the model, we want to maximize the log-likelihood:

max
θ

( fθ(xtrain) − log Z(θ))

We need to compute the gradient of the log-likelihood:

∇θ fθ(xtrain) − ∇θlog Z(θ)
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Z(θ) = ∫ exp( fθ(x))dx
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∇θ fθ(xtrain) − ∇θlog Z(θ)

Gradient of the log-likelihood

= ∇θ fθ(xtrain) − 𝔼xsample
[∇θ fθ(xsample)]

≈ ∇θ fθ(xtrain) − ∇θ fθ(xsample)

which is a 1-sample Monte Carlo estimator

xsample ∼
exp( fθ(x))

Z(θ)

This is an unbiased estimator of a true gradient.

How to sample?

Contrastive-Divergence method
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How to sample?

Use an iterative approach called Metropolis-Hastings MCMC: 

• Initialize  randomly at x0 ∼ π(x) t = 0

•  noisex′ = xt +
• If  let fθ(x′ ) > fθ(xt) xt+1 = x′ 

• Otherwise let   with probability xt+1 = x′ exp( fθ(x′ ) − fθ(xt))

occasionally take downhill moves

Works in theory, but can take very long to converge.

• Repeat for :t = 0,1,2,⋯, T − 1
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Using Contrastive Divergence to train an EBM requires sampling even 
during the training phase, not just the inference phase.

Even if you have EBM trained, generating samples is very expensive

Can we do better?



Unadjusted Langevin MCMC
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• Initialize  randomly at x0 t = 0

• ϵt ∼ 𝒩(0,1)

No rejection involved but  converges to a sample from  
when  and 

xt pθ(x)
T → ∞ τ → 0

• Repeat for t = 0,1,2,⋯T − 1 :

• xt+1 = xt + τ∇xlog pθ(x) |x=xt
+ 2τϵt

Unadjusted Langevin MCMC

Properties:
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Can we train EBMs without sampling?
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From VAEs to Diffusion models

Energy-based models (EBMs)
MCMC methods for EBMs

Variational Autoencoders (VAEs)

Score-based Generative models (SBGMs)
MCMC methods for SBGMs

SDE-based diffusion models
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pθ(x) =
exp( fθ(x))

Z(θ)

 sθ(x) = ∇xlog pθ(x)

log pθ(x) = log exp( fθ(x)) − log Z(θ)

log pθ(x) = log fθ(x) − log Z(θ)

Score function for EBMs
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 sθ(x) = ∇xlog pθ(x)

 sθ(x) = −
(x − μ)

σ2

Gaussian distribution: 

 pθ(x) =
1

2πσ
exp (−

(x − μ)
σ2 )

Score: vector field  
vs  

PDF: scalar value
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𝔼x∼p [ 1
2

| |∇xlog pθ(x) | |2
2 + tr(∇2

x log pθ(x))]
Sample from a mini-batch of datapoints {x1, x2, ⋯, xn}

Estimate the score matching loss with empirical mean over all data points
1
n
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∑
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𝔼x∼pdata [ 1
2

| |∇xlog pθ(xi) | |2
2 + tr(∇2
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Perform stochastic gradient descent (SGD)
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Sample from a mini-batch of datapoints {x1, x2, ⋯, xn}

Estimate the score matching loss with empirical mean over all data points

Perform stochastic gradient descent (SGD)

No need to sample from the EBMs!

1
n

n

∑
i=1

𝔼x∼pdata [ 1
2

| |∇xlog pθ(xi) | |2
2 + tr(∇2

x log pθ(xi))]
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1
n
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∑
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𝔼x∼pdata [ 1
2

| |∇xlog pθ(xi) | |2
2 + tr(∇2

x log pθ(xi))]
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Caveat: The Hessian  term is computationally very expensive for large 
models.

tr(∇2
x log pθ(x))

1
n

n

∑
i=1

𝔼x∼pdata [ 1
2

| |∇xlog pθ(xi) | |2
2 + tr(∇2

x log pθ(xi))]
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EBMs

Score-based models
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sθ(x) ≈ ∇xlog pdata(x)

Objective: Minimize the difference between a predicted score vector field wrt 
the ground truth

Score matching:
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sθ(x) ≈ ∇xlog pdata(x)pdata(x)



How do we generate samples?
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Role of MCMC in Score-based Models
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Data samples Scores New samples

Langvein 
MCMC

sθ(x) ≈ ∇xlog pdata(x)

Score  
matching



• Langevin MCMC process does not work  

• We only get noise, and the optimization process get stuck in some local minima
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Issues with score-based generative modeling



How to fix these issues?
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Path to diffusion models
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Using multiple noise levels
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What happens when we have infinite noise levels?
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From VAEs to Diffusion models

Energy-based models (EBMs)
MCMC methods for EBMs

Variational Autoencoders (VAEs)

Score-based Generative models (SBGMs)
MCMC methods for SBGMs

SDE-based diffusion models



Perturbing data with stochastic processes
SDE-based diffusion models
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Forward SDE: (t : 0 → T)

Reverse SDE: (t : T → 0)
Infinitesimal noise in
the reverse time directionscore function

pt(x) pT(x)p0(x)

PriorData
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Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC (Du et al. 2024)
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Physically based rendering

Metropolis Hastings

Langevin Monte Carlo

Hamiltonian Monte Carlo

Markov chain Monte Carlo

Generative models

Langevin dynamics

Stochastic differential 
equations (SDEs)
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• Improvements in MCMC methods can bring benefits to both the communities

• We are working on this…

• Can we bring these improvements to generative AI?

258

• Can MCMC serves as a link to bring physical accuracy within generative models?

• Many applications in architecture, aircraft design needs physical accuracy 
before realization in practice
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