
1

Gurprit Singh

MCMC: Bridging rendering, optimization and generative AI

Wenzel Jakob

FOR INFORMATICS

MCMC: Bridging rendering, optimization and generative AI

2

MCMC

3

stands for Markov chain Monte CarloMCMC Markov chain

3

stands for Markov chain Monte CarloMCMC Markov chain

4

Sunny

: Weather forecast modelsMarkov chain

4

0.7

Sunny

: Weather forecast modelsMarkov chain

4

Cloudy

0.2

0.7

Sunny

: Weather forecast modelsMarkov chain

4

Cloudy

Rainy

0.2

0.1

0.7

Sunny

: Weather forecast modelsMarkov chain

5

Cloudy

: Weather forecast modelsMarkov chain

5

Cloudy

Rainy

: Weather forecast models

0.3

Markov chain

5

Cloudy

Rainy

: Weather forecast models

0.3

0.3

Sunny

Markov chain

5

Cloudy

Rainy

: Weather forecast models

0.3

0.3

0.4

Sunny

Markov chain

6

Cloudy

Rainy

0.2

0.1

0.7

Sunny

: Weather forecast modelsMarkov chain

0.3

0.3

0.4

7

stands for Markov chain Monte CarloMCMC Markov chain

7

stands for Markov chain Monte CarloMCMC Markov chain

MCMC: Bridging rendering, optimization and generative AI

8

9

01
10Image courtesy David Coeurjolly

01

Image Plane

Cornell Box

hitpoint

10Image courtesy David Coeurjolly

01

Image Plane

11

01

Image Plane

12

01

Image Plane

13

01
14

Image Plane

15 Source: PBRT & Bitterli Resources

Source: PBRT & Bitterli Resources

MCMC Sampling for Light Transport

16

An example path

Source: PBRT & Bitterli Resources

MCMC Sampling for Light Transport

17

Lens perturbation Caustic perturbation Multi-chain perturbation Manifold perturbation

An example path

Source: PBRT & Bitterli Resources

MCMC Sampling for Light Transport

18

Lens perturbation Caustic perturbation Multi-chain perturbation Manifold perturbation

An example path

Source: PBRT & Bitterli Resources

MCMC Sampling for Light Transport

19

Lens perturbation Caustic perturbation Multi-chain perturbation Manifold perturbation

An example path

Source: PBRT & Bitterli Resources

MCMC Sampling for Light Transport

20

MCMC: Bridging rendering, optimization and

21

generative AI

Optimization manifold

22

Optimization manifold

22

Optimization manifold

22

Optimization manifold

23

Optimization manifold

23

future

Optimization manifold

24

current

future
perturbation

Optimization manifold

24

current

future
perturbation

Optimization manifold

24

current

future

This is a Markov Chain!

perturbation

Optimization manifold

24

current

future

This is a Markov Chain!

Stochastic Gradient Descent (SGD)

perturbation

Optimization manifold

25

Stochastic Gradient Descent (SGD)

Global discovery

Local exploration

Optimization manifold

25

Stochastic Gradient Descent (SGD)

Global discovery

Local exploration

- Explore the whole manifold

Optimization manifold

25

Stochastic Gradient Descent (SGD)

Global discovery

Local exploration

- Explore the whole manifold

- Once the region is detected, reach the local minima

Optimization manifold

26

Global discovery

Local exploration

Stochastic Gradient Descent (SGD)

}MCMC methods

MCMC: Bridging rendering, optimization and

27

generative AI

28

generative AI

Image source

https://towardsdatascience.com/implement-a-gaussian-process-from-scratch-2a074a470bce

29

Image source

(using Microsoft Copilot)

generative AI

https://towardsdatascience.com/implement-a-gaussian-process-from-scratch-2a074a470bce

29

Image source

Prompt: Create an image that represents
the bridge between physically based rendering,
optimization and generative AI

(using Microsoft Copilot)

generative AI

https://towardsdatascience.com/implement-a-gaussian-process-from-scratch-2a074a470bce

29

Image source

Prompt: Create an image that represents
the bridge between physically based rendering,
optimization and generative AI

(using Microsoft Copilot)

generative AI

https://towardsdatascience.com/implement-a-gaussian-process-from-scratch-2a074a470bce

29

Image source

Prompt: Create an image that represents
the bridge between physically based rendering,
optimization and generative AI

(using Microsoft Copilot)

generative AI

https://towardsdatascience.com/implement-a-gaussian-process-from-scratch-2a074a470bce

29

Image source

Prompt: Create an image that represents
the bridge between physically based rendering,
optimization and generative AI

(using Microsoft Copilot)

generative AI

https://towardsdatascience.com/implement-a-gaussian-process-from-scratch-2a074a470bce

What kind of generative models are available?

30

What kind of generative models are available?

• Energy-based models

• Score-based models

• Diffusion models

31

⋮

Which one to chose and why?

32

Task: Composing an image

33

Task: Composing an image

33

Task: Composing an image

34

Task: Composing an image

35

Task: Composing an image

36

Task: Composing an image

36

Task: Composing an image

36

What do we need for such a problem?

Task: Composing an image

• Compositional generation with Energy-Based Diffusion Models and MCMC [Du et
al. 2024]

37

Task: Composing an image

• Compositional generation with Energy-Based Diffusion Models and MCMC [Du et
al. 2024]

• It’s the sampler and not the architecture which needs to be changed!

37

Task: Composing an image

• Compositional generation with Energy-Based Diffusion Models and MCMC [Du et
al. 2024]

• It’s the sampler and not the architecture which needs to be changed!

• Energy-based models are by construction very flexible

37

Task: Composing an image

• Compositional generation with Energy-Based Diffusion Models and MCMC [Du et
al. 2024]

• It’s the sampler and not the architecture which needs to be changed!

• Energy-based models are by construction very flexible

• They rely on MCMC sampling

37

Task: Composing an image

• Compositional generation with Energy-Based Diffusion Models and MCMC [Du et
al. 2024]

• It’s the sampler and not the architecture which needs to be changed!

• Energy-based models are by construction very flexible

• They rely on MCMC sampling

• We will go in details later on!

37

38

Markov chain Monte Carlo (MCMC) Methods

Stochastic Differential Equations (SDEs)

Theoretical background

38

MCMC in Rendering

MC Integration / MIS / Limitations
Metropolis light Transport

Markov chain Monte Carlo (MCMC) Methods

Stochastic Differential Equations (SDEs)

Theoretical background

38

MCMC in Rendering

MC Integration / MIS / Limitations
Metropolis light Transport

Markov chain Monte Carlo (MCMC) Methods

Stochastic Differential Equations (SDEs)

Theoretical background

MCMC in Optimization

Stochastic Gradient Descent (SGD)
Stochastic Gradient Langevin Dynamics

Bayesian inference using SGD

38

MCMC in Rendering

MC Integration / MIS / Limitations
Metropolis light Transport

Markov chain Monte Carlo (MCMC) Methods

Stochastic Differential Equations (SDEs)

Theoretical background

MCMC in Optimization

Stochastic Gradient Descent (SGD)
Stochastic Gradient Langevin Dynamics

Bayesian inference using SGD

MCMC in Generative AI

From VAEs to Diffusion models

Energy-based models (EBMs)

MCMC methods for EBMs

Score-based Generative models

Markov chain Monte Carlo (MCMC) Methods

Stochastic Differential Equations (SDEs)

Theoretical background

40

Deterministic motion

depends on history

https://youtu.be/-FkaWgbTAwU?si=CFSKOjQMSe4sWCCy&t=31

40

Deterministic motion

depends on history

https://youtu.be/-FkaWgbTAwU?si=CFSKOjQMSe4sWCCy&t=31

41

Deterministic motion Random motion

depends on history independent of history

https://youtu.be/-FkaWgbTAwU?si=CFSKOjQMSe4sWCCy&t=31
http://www.microscopy-uk.org.uk/dww/home/hombrown.htm

41

Deterministic motion Random motion

depends on history independent of history

https://youtu.be/-FkaWgbTAwU?si=CFSKOjQMSe4sWCCy&t=31
http://www.microscopy-uk.org.uk/dww/home/hombrown.htm

41

Deterministic motion Random motion

depends on history independent of history

https://youtu.be/-FkaWgbTAwU?si=CFSKOjQMSe4sWCCy&t=31
http://www.microscopy-uk.org.uk/dww/home/hombrown.htm

42

How we describe systems evolving over time?

42

How we describe systems evolving over time?

How do we incorporate randomness?

42

How we describe systems evolving over time?

How do we incorporate randomness?

How do we simulate motion numerically?

42

Stochastic Differential equations (SDEs)

How we describe systems evolving over time?

How do we incorporate randomness?

How do we simulate motion numerically?

43

Stochastic Differential equations (SDEs)

43

Stochastic Differential equations (SDEs)

43

Stochastic Differential equations (SDEs)

Differential equations describe phenomena appearing throughout nature,
technology & society

43

Stochastic Differential equations (SDEs)

Differential equations describe phenomena appearing throughout nature,
technology & society

• Molecular dynamics: the goal is to simulate molecule trajectories

44

• Molecular dynamics: the goal is to simulate molecule trajectories
Max Planck Institute of Biophysics

44

• Molecular dynamics: the goal is to simulate molecule trajectories
Max Planck Institute of Biophysics

45

Stochastic Different equations (SDEs)

Differential equations describe phenomena appearing throughout nature,
technology & society

• Molecular dynamics: the goal is to simulate molecule trajectories

• Stock exchange

45

Stochastic Different equations (SDEs)

Differential equations describe phenomena appearing throughout nature,
technology & society

• Molecular dynamics: the goal is to simulate molecule trajectories

• Stock exchange

45

Stochastic Different equations (SDEs)

Differential equations describe phenomena appearing throughout nature,
technology & society

• Molecular dynamics: the goal is to simulate molecule trajectories

• Stock exchange

46

Stochastic Different equations (SDEs)

Differential equations describe phenomena appearing throughout nature,
technology & society

• Molecular dynamics: the goal is to simulate molecule trajectories

• Stock exchange

Max Planck Institute of Biophysics

• Weather forecast models

46

Stochastic Different equations (SDEs)

Differential equations describe phenomena appearing throughout nature,
technology & society

• Molecular dynamics: the goal is to simulate molecule trajectories

• Stock exchange

Max Planck Institute of Biophysics

• Weather forecast models

46

Stochastic Different equations (SDEs)

Differential equations describe phenomena appearing throughout nature,
technology & society

• Molecular dynamics: the goal is to simulate molecule trajectories

• Stock exchange

Max Planck Institute of Biophysics

• Weather forecast models

47

Stochastic Different equations (SDEs)

Differential equations describe phenomena appearing throughout nature,
technology & society

• Molecular dynamics: the goal is to simulate molecule trajectories

• Stock exchange

Max Planck Institute of Biophysics

• Weather forecast

47

Stochastic Different equations (SDEs)

Differential equations describe phenomena appearing throughout nature,
technology & society

• Molecular dynamics: the goal is to simulate molecule trajectories

• Stock exchange

Max Planck Institute of Biophysics

• Weather forecast

48

Stochastic Different equations (SDEs)

SDEs are powerful mathematical tools to

formulate such motion from

macroscopic to microscopic level

48

Stochastic Different equations (SDEs)

SDEs are powerful mathematical tools to

formulate such motion from

macroscopic to microscopic level

Markov chain Monte Carlo

Markov chain Monte Carlo

50

A Markov chain is a sequence of events, where the future event/state

only depends on the current state.

Markov chain Monte Carlo

50

A Markov chain is a sequence of events, where the future event/state

only depends on the current state.

Markov chain Monte Carlo

50

A Markov chain is a sequence of events, where the future event/state

only depends on the current state.

Markov chain Monte Carlo

50

A Markov chain is a sequence of events, where the future event/state

only depends on the current state.

Markov chain Monte Carlo

50

A Markov chain is a sequence of events, where the future event/state

only depends on the current state.

Markov chain Monte Carlo

50

A Markov chain is a sequence of events, where the future event/state

only depends on the current state.

Markov chain Monte Carlo

50

A Markov chain is a sequence of events, where the future event/state

only depends on the current state.

Markov chain Monte Carlo

50

A Markov chain is a sequence of events, where the future event/state

only depends on the current state.

Markov chain Monte Carlo

50

A Markov chain is a sequence of events, where the future event/state

only depends on the current state.

Markov chain Monte Carlo

50

A Markov chain is a sequence of events, where the future event/state

only depends on the current state.

Markov chain Monte Carlo

50

A Markov chain is a sequence of events, where the future event/state

only depends on the current state.

Markov chain Monte Carlo

50

A Markov chain is a sequence of events, where the future event/state

only depends on the current state.

Markov chain Monte Carlo

50

A Markov chain is a sequence of events, where the future event/state

only depends on the current state.

Markov chain Monte Carlo

50

A Markov chain is a sequence of events, where the future event/state

only depends on the current state.

Markov chain Monte Carlo

50

A Markov chain is a sequence of events, where the future event/state

only depends on the current state.

Markov chain Monte Carlo

50

A Markov chain is a sequence of events, where the future event/state

only depends on the current state.

Markov chain Monte Carlo

51

Markov chain Monte Carlo

51

An arbitrary Markov chain simply wanders in the space

Markov chain Monte Carlo

51

An arbitrary Markov chain simply wanders in the space

Target distribution

Markov chain Monte Carlo

51

An arbitrary Markov chain simply wanders in the space

Target distribution

When run long enough, will preserve the underlying distribution (invariance property)

Markov chain Monte Carlo

51

An arbitrary Markov chain simply wanders in the space

Target distribution

When run long enough, will preserve the underlying distribution (invariance property)

Markov chain Monte Carlo

51

An arbitrary Markov chain simply wanders in the space

Target distribution

When run long enough, will preserve the underlying distribution (invariance property)

But there is an initial bias!

Markov chain Monte Carlo

52

Metropolis-Hastings approach

53

Target distribution

Metropolis-Hastings approach

p(x)

53

Target distribution

Metropolis-Hastings approach

x

p(x)

53

Target distribution

Metropolis-Hastings approach

T(x → x′)
x

p(x)

53

Target distribution

Metropolis-Hastings approach

T(x → x′)
x

p(x)

53

Target distribution

Metropolis-Hastings approach

T(x → x′)
x

x′

p(x)

53

Target distribution

α =
p(x′)
p(x)

Metropolis-Hastings approach

T(x → x′)
T(x′ → x)

T(x → x′)
x

x′

If we accept, otherwise we rejectα < ϵ
p(x)

53

Target distribution

α =
p(x′)
p(x)

Metropolis-Hastings approach

T(x → x′)
T(x′ → x)

T(x → x′)
x

x′

If we accept, otherwise we rejectα < ϵ
p(x)

53

Target distribution

α =
p(x′)
p(x)

Metropolis-Hastings approach

T(x → x′)
T(x′ → x)

T(x → x′)
x

x′

If we accept, otherwise we rejectα < ϵ
p(x)

53

Target distribution

α =
p(x′)
p(x)

Metropolis-Hastings approach

T(x → x′)
T(x′ → x)

T(x → x′)
x

x′

If we accept, otherwise we rejectα < ϵ
p(x)

53

Target distribution

α =
p(x′)
p(x)

Metropolis-Hastings approach

T(x → x′)
T(x′ → x)

T(x → x′)
x

x′

If we accept, otherwise we rejectα < ϵ
p(x)

53

Target distribution

α =
p(x′)
p(x)

Metropolis-Hastings approach

T(x → x′)
T(x′ → x)

T(x → x′)
x

x′

If we accept, otherwise we rejectα < ϵ
p(x)

53

Target distribution

α =
p(x′)
p(x)

Metropolis-Hastings approach

T(x → x′)
T(x′ → x)

T(x → x′)
x

x′

If we accept, otherwise we rejectα < ϵ
p(x)

53

Target distribution

α =
p(x′)
p(x)

Metropolis-Hastings approach

T(x → x′)
T(x′ → x)

T(x → x′)
x

x′

If we accept, otherwise we rejectα < ϵ
p(x)

53

Target distribution

α =
p(x′)
p(x)

Metropolis-Hastings approach

T(x → x′)
T(x′ → x)

T(x → x′)
x

x′

If we accept, otherwise we rejectα < ϵ
p(x)

53

Target distribution

α =
p(x′)
p(x)

Metropolis-Hastings approach

T(x → x′)
T(x′ → x)

T(x → x′)
x

x′

If we accept, otherwise we rejectα < ϵ
p(x)

53

Target distribution

α =
p(x′)
p(x)

Metropolis-Hastings approach

T(x → x′)
T(x′ → x)

T(x → x′)
x

x′

If we accept, otherwise we rejectα < ϵ
p(x)

53

Target distribution

α =
p(x′)
p(x)

Metropolis-Hastings approach

T(x → x′)
T(x′ → x)

T(x → x′)
x

x′

If we accept, otherwise we rejectα < ϵ
p(x)

54

Mathematical formulation

54

+ drift

Mathematical formulation

54

+ drift

Mathematical formulation

54

+ drift

Mathematical formulation

54

+ drift

Mathematical formulation

55

+ randomnessdrift+

Mathematical formulation

55

+ randomnessdrift+

Mathematical formulation

55

average trajectory

+ randomnessdrift+

Mathematical formulation

55

average trajectory

+ randomnessdrift+

Mathematical formulation

55

jiggle

average trajectory

+ randomnessdrift+

Mathematical formulation

55

jiggle

average trajectory

+ randomnessdrift+

Mathematical formulation

Stochastic Different equations (SDEs)

56

jiggle

average trajectory

+ randomnessdrift+

Stochastic Different equations (SDEs)

57

+ randomnessdrift+

Stochastic Different equations (SDEs)

57

+ randomnessdrift+

Stochastic Different equations (SDEs)

57

average trajectory

+ randomnessdrift+

Stochastic Different equations (SDEs)

57

jiggle

average trajectory

+ randomnessdrift+

Stochastic Different equations (SDEs)

58

Stochastic Different equations (SDEs)

jiggle

average trajectory

randomnessdrift

58

Stochastic Different equations (SDEs)

jiggle

average trajectory

randomnessdrift

59

Brownian motion: simplest form of SDE

60

Brownian motion: simplest form of SDE

drift

61

Brownian motion: simplest form of SDE

Illustration inspired from Keenan Crane notes

61

Brownian motion: simplest form of SDE

Illustration inspired from Keenan Crane notes

Gaussian noise

61

Brownian motion: simplest form of SDE

Illustration inspired from Keenan Crane notes

Gaussian noise

61

Brownian motion: simplest form of SDE

Illustration inspired from Keenan Crane notes

has independent samples

Gaussian noise

61

Brownian motion: simplest form of SDE

Illustration inspired from Keenan Crane notes

has independent samples

Gaussian noise

62

Discretizing Brownian motion

62

Discretizing Brownian motion

• Euler Maruyama method:

62

Discretizing Brownian motion

where

• Euler Maruyama method:

63

Discretized Brownian motion: Examples

Given target distribution Random walk in space

63

Discretized Brownian motion: Examples

Given target distribution Random walk in space

63

Discretized Brownian motion: Examples

Given target distribution Random walk in space

64

Discretized Brownian motion: Examples

Target distribution

65

Discretized Brownian motion: Examples

Target distribution Random walk

65

Discretized Brownian motion: Examples

Target distribution Random walk

66

Discretized Brownian motion: Examples

Target distribution Random walk Random walk w/ jumps

66

Discretized Brownian motion: Examples

Target distribution Random walk Random walk w/ jumps

66

Discretized Brownian motion: Examples

Target distribution Random walk Random walk w/ jumps

67

Metropolis-adjusted Brownian motion

Random walk

67

Metropolis-adjusted Brownian motion

Random walk

Random walk w/ MH

68

Metropolis-adjusted Brownian motion

Random walk

Random walk w/ MH

68

Metropolis-adjusted Brownian motion

Random walk

Random walk w/ MH

68

Metropolis-adjusted Brownian motion

Random walk

Random walk w/ MH

69

Metropolis-adjusted Brownian motion

Random walk Random walk w/ MH
and w/ jumps

Random walk w/ MH

69

Metropolis-adjusted Brownian motion

Random walk Random walk w/ MH
and w/ jumps

Random walk w/ MH

69

Metropolis-adjusted Brownian motion

Random walk Random walk w/ MH
and w/ jumps

Random walk w/ MH

69

Metropolis-adjusted Brownian motion

Random walk Random walk w/ MH
and w/ jumps

70

Stochastic Different equations (SDEs)

jiggle

average trajectory

randomnessdrift

70

Stochastic Different equations (SDEs)

jiggle

average trajectory

randomnessdrift

71

Stochastic Different equations (SDEs)

71

Stochastic Different equations (SDEs)

• When the particles are jiggling, we need
to model & simulate the forces that induce
Jiggling (“Langevin dynamics”)

72

Langevin dynamics

73

Langevin dynamics

Extends Brownian motion by adding a drift term that represents a deterministic force

73

Langevin dynamics

Extends Brownian motion by adding a drift term that represents a deterministic force

73

Langevin dynamics

Extends Brownian motion by adding a drift term that represents a deterministic force

randomness

74

Langevin dynamics

Extends Brownian motion by adding a drift term that represents a deterministic force

drift randomness

74

Langevin dynamics

Extends Brownian motion by adding a drift term that represents a deterministic force

drift randomness

75

Langevin dynamics

Extends Brownian motion by adding a drift term that represents a deterministic force

drift randomness

75

Langevin dynamics

Extends Brownian motion by adding a drift term that represents a deterministic force

drift randomness

75

Langevin dynamics

Extends Brownian motion by adding a drift term that represents a deterministic force

Target distribution

drift randomness

76

Langevin dynamics

Target distribution

Extends Brownian motion by adding a drift term that represents a deterministic force

drift randomness

77

Simulating Langevin diffusion

p(x)

77

Euler-Maruyama method to simulate Langevin diffusion:

Simulating Langevin diffusion

p(x)

77

Euler-Maruyama method to simulate Langevin diffusion:

Simulating Langevin diffusion

p(x)

77

Step size

Euler-Maruyama method to simulate Langevin diffusion:

Simulating Langevin diffusion

p(x)

77

Step size

Gaussian noise

Euler-Maruyama method to simulate Langevin diffusion:

Simulating Langevin diffusion

p(x)

78

Simulating Langevin diffusion

Euler-Maruyama method to simulate Langevin diffusion:

78

Simulating Langevin diffusion

Euler-Maruyama method to simulate Langevin diffusion:

Mean of the gaussian Covariance

79

Simulating Langevin diffusion

Euler-Maruyama method to simulate Langevin diffusion:

79

Simulating Langevin diffusion

Euler-Maruyama method to simulate Langevin diffusion:

Metropolis-adjusted Langevin update (MALA):

79

Simulating Langevin diffusion

Euler-Maruyama method to simulate Langevin diffusion:

Metropolis-adjusted Langevin update (MALA):

is accepted based on the Metropolis-Hastings acceptance prob.

Langevin dynamics: Examples

80

Langevin dynamics: Examples

80

Step size =0.1τ

Langevin dynamics: Examples

80

Step size =0.1τ

Langevin dynamics: Examples

80

Step size =0.1τ

Langevin dynamics: Examples

80

Step size =0.1τ Step size =1τ

Recap

81

Recap

• Introduced MCMC

81

Recap

• Introduced MCMC

• Introduced Stochastic Differential Equations (SDEs)

81

Recap

• Introduced MCMC

• Introduced Stochastic Differential Equations (SDEs)

• MCMC methods

81

Recap

• Introduced MCMC

• Introduced Stochastic Differential Equations (SDEs)

• MCMC methods

• Metropolis-Hastings

81

Recap

• Introduced MCMC

• Introduced Stochastic Differential Equations (SDEs)

• MCMC methods

• Metropolis-Hastings

• Brownian motion : a simple SDE

81

Recap

• Introduced MCMC

• Introduced Stochastic Differential Equations (SDEs)

• MCMC methods

• Metropolis-Hastings

• Brownian motion : a simple SDE

• Langevin Dynamics

81

01

Applications

82

83

83

MCMC in Rendering

MC Integration / MIS / Limitations
Metropolis light Transport

MC & MCMC Rendering

84

Light Transport 101

85

Final pixel color

Light Transport 101

85

Final pixel color

Monte Carlo integration

86

0 1

Monte Carlo integration

86

0 1

Monte Carlo integration

86

0 1

Monte Carlo integration

86

0 1

Monte Carlo integration

86

0 1

Importance sampling

87

0 1

Importance sampling

87

0 1

Importance sampling

87

0 1

Importance sampling

87

0 1

Sampling the integral

88

Sampling the integral

88

Sampling the integral

88

Sampling the integral

88

Sampling the integral

88

Sampling the integral

88

Sampling the integral

88

Sampling the integral

88

Light paths

89

Material model Material-Material interactions Final rendering

The path tracing algorithm

90

x

The path tracing algorithm

90

x
�

The path tracing algorithm

90

def L(x, ω):
 y = intersect(x, ω)

x
�

The path tracing algorithm

90

def L(x, ω):
 y = intersect(x, ω)

x
�

y

The path tracing algorithm

90

def L(x, ω):
 y = intersect(x, ω)

 ω’, weight = scatter(x, ω)

x
�

y
��

The path tracing algorithm

90

def L(x, ω):
 y = intersect(x, ω)

 ω’, weight = scatter(x, ω)

 return y.emission +
 weight * L(y, -ω’)

x
�

y
��

The path tracing algorithm

90

def L(x, ω):
 y = intersect(x, ω)

 ω’, weight = scatter(x, ω)

 return y.emission +
 weight * L(y, -ω’)

x
�

y
��

The path tracing algorithm

90

def L(x, ω):
 y = intersect(x, ω)

 ω’, weight = scatter(x, ω)

 return y.emission +
 weight * L(y, -ω’)

x
�

y
��

���

The path tracing algorithm

91

def L(x, ω):
 y = intersect(x, ω)

 ω’, weight = scatter(x, ω)

 return y.emission +
 weight * L(y, -ω’)

x
�

y
��

���

uses randomness

The path tracing algorithm

92

def L(x, ω):
 y = intersect(x, ω)

 ω’, weight = scatter(x, ω)

 return y.emission +
 weight * L(y, -ω’)

uses randomness

The path tracing algorithm

92

def L(x, ω):
 y = intersect(x, ω)

 ω’, weight = scatter(x, ω)

 return y.emission +
 weight * L(y, -ω’)

def L(x, ω, u1 … un):
 y = intersect(x, ω)

 ω’, weight = scatter(x, ω, u1)

 return y.emission +
 weight * L(y, -ω’, u2 … un)

The path tracing algorithm

92

def L(x, ω):
 y = intersect(x, ω)

 ω’, weight = scatter(x, ω)

 return y.emission +
 weight * L(y, -ω’)

def L(x, ω, u1 … un):
 y = intersect(x, ω)

 ω’, weight = scatter(x, ω, u1)

 return y.emission +
 weight * L(y, -ω’, u2 … un)

def L(x, ω, u):
 y = intersect(x, ω)

 ω’, weight = scatter(x, ω, u1)

 return y.emission +
 weight * L(y, -ω’, u2 … un)

def L(x, ω, u):
 y = intersect(x, ω)

 ω’, weight = scatter(x, ω, u1)

 return y.emission +
 weight * L(y, -ω’, u2 … un)

Another interpretation

93

def L(x, ω, u):
 y = intersect(x, ω)

 ω’, weight = scatter(x, ω, u1)

 return y.emission +
 weight * L(y, -ω’, u2 … un)

Another interpretation

93

Hypercube of
“random numbers”

def L(x, ω, u):
 y = intersect(x, ω)

 ω’, weight = scatter(x, ω, u1)

 return y.emission +
 weight * L(y, -ω’, u2 … un)

Another interpretation

93

Hypercube of
“random numbers”

def L(x, ω, u):
 y = intersect(x, ω)

 ω’, weight = scatter(x, ω, u1)

 return y.emission +
 weight * L(y, -ω’, u2 … un)

Another interpretation

93

Hypercube of
“random numbers”

def L(x, ω, u):
 y = intersect(x, ω)

 ω’, weight = scatter(x, ω, u1)

 return y.emission +
 weight * L(y, -ω’, u2 … un)

Another interpretation

93

Hypercube of
“random numbers”

def L(x, ω, u):
 y = intersect(x, ω)

 ω’, weight = scatter(x, ω, u1)

 return y.emission +
 weight * L(y, -ω’, u2 … un)

Another interpretation

93

Hypercube of
“random numbers”

def L(x, ω, u):
 y = intersect(x, ω)

 ω’, weight = scatter(x, ω, u1)

 return y.emission +
 weight * L(y, -ω’, u2 … un)

Another interpretation

93

Hypercube of
“random numbers”

Convergence

94

1 sample 4 samples 16 samples

256 samples64 samples 1024 samples

But not all is well..

95

But not all is well..

95

But not all is well..

95

But not all is well..

95

But not all is well..

95

But not all is well..

95

.. a more problematic case

96

A more challenging case

.. a more problematic case

96

A more challenging case

.. a more problematic case

96

A more challenging case

.. a more problematic case

96

A more challenging case

Paper tree

97

Metropolis Light Transport 
[Veach & Guibas 1997]

Paper tree

97

Multiplexed MLT 
[Hachisuka et al. 2014]

Metropolis Light Transport 
[Veach & Guibas 1997]

Primary Sample Space MLT 
[Kelemen et al. 2002]

Chartered MLT 
[Pantaleoni et al. 2017]

Reversible Jump MLT 
[Bitterli et al. 2017]

Fusing State Spaces 
[Otsu et al. 2017]

Paper tree

97

Multiplexed MLT 
[Hachisuka et al. 2014]

Metropolis Light Transport 
[Veach & Guibas 1997]

Primary Sample Space MLT 
[Kelemen et al. 2002]

Manifold Exploration 
[Jakob & Marschner 2012]

Chartered MLT 
[Pantaleoni et al. 2017]

Reversible Jump MLT 
[Bitterli et al. 2017]

Fusing State Spaces 
[Otsu et al. 2017]

Markov Chain review (discrete case)

0.3A

B

C
0.5

0.5 0.2

0.8

98

0.3

Markov Chain review (discrete case)

0.3A

B

C
0.5

0.5 0.2

0.8

98

0.3

Markov Chain review (discrete case)

0.3A

B

C
0.5

0.5 0.2

0.8

99

0.3

Markov Chain review (discrete case)

0.3A

B

C
0.5

0.5 0.2

0.8

0

0.1

0.2

0.3

0.4

A B C

38.6% 26.3% 35.1%

99

0.3

Metropolis-Hastings algorithm (continuous case)

100

0 1

Metropolis-Hastings algorithm (continuous case)

100

0 1

Metropolis-Hastings algorithm (continuous case)

100

0 1

Metropolis-Hastings algorithm (continuous case)

100

0 1

Metropolis-Hastings algorithm (continuous case)

100

0 1

Metropolis-Hastings algorithm (continuous case)

100

0 1

Metropolis-Hastings algorithm (continuous case)

100

0 1

Metropolis-Hastings algorithm (continuous case)

100

0 1

Interesting properties:

1. Samples are correlated

2. Algorithm tends to
explore local maxima

3. Can be combined with
classical MC algorithms

Application to path tracing

101

Hypercube of
“random numbers”

Application to path tracing

101

Hypercube of
“random numbers”

def mcmc_path_tracer():
 u = [0.5, …, 0.5]

Application to path tracing

101

Hypercube of
“random numbers”

def mcmc_path_tracer():
 u = [0.5, …, 0.5]
 while !done:

Application to path tracing

101

Hypercube of
“random numbers”

def mcmc_path_tracer():
 u = [0.5, …, 0.5]
 while !done:
 u’ = perturb(u)

Application to path tracing

101

Hypercube of
“random numbers”

def mcmc_path_tracer():
 u = [0.5, …, 0.5]
 while !done:
 u’ = perturb(u)

Application to path tracing

101

Hypercube of
“random numbers”

def mcmc_path_tracer():
 u = [0.5, …, 0.5]
 while !done:
 u’ = perturb(u)
 # Acceptance probability
 a = L(u’) / L(u)

Application to path tracing

101

Hypercube of
“random numbers”

def mcmc_path_tracer():
 u = [0.5, …, 0.5]
 while !done:
 u’ = perturb(u)
 # Acceptance probability
 a = L(u’) / L(u)

Application to path tracing

101

Hypercube of
“random numbers”

def mcmc_path_tracer():
 u = [0.5, …, 0.5]
 while !done:
 u’ = perturb(u)
 # Acceptance probability
 a = L(u’) / L(u)
 if rand() < a:
 u = u’

Equal-time comparison

102

Path tracing "Metropolized" Path tracing

Sampling light paths bidirectionally

103

Sampling light paths bidirectionally

103

104

s=0, t=3 s=1, t=2 s=2, t=1 s=3, t=0

s=0, t=4 s=1, t=3 s=2, t=2 s=3, t=1 s=4, t=0

s=0, t=5 s=1, t=4 s=2, t=3 s=3, t=2 s=4, t=1 s=5, t=0

s=0, t=6 s=1, t=5 s=2, t=4 s=3, t=3 s=4, t=2 s=5, t=1 s=6, t=0

105

s=0, t=3 s=1, t=2 s=2, t=1 s=3, t=0

s=0, t=4 s=1, t=3 s=2, t=2 s=3, t=1 s=4, t=0

s=0, t=5 s=1, t=4 s=2, t=3 s=3, t=2 s=4, t=1 s=5, t=0

s=0, t=6 s=1, t=5 s=2, t=4 s=3, t=3 s=4, t=2 s=5, t=1 s=6, t=0

Equal-time comparison

106

Path tracing Bidirectional tracing

Multiplexing: exploration using multiple strategies

107

Multiplexing: exploration using multiple strategies

107

Multiplexing: exploration using multiple strategies

107

Multiplexing: exploration using multiple strategies

107

Multiplexing: exploration using multiple strategies

107

Multiplexing: exploration using multiple strategies

107

What actually happens :(

108

L1 L2

def L(x, ω, u):
 if u1 < 0.5:
 return L1(x, ω, u2 … un)
 else:
 return L2(x, ω, u2 … un)

L1

What actually happens :(

108

L1 L2

def L(x, ω, u):
 if u1 < 0.5:
 return L1(x, ω, u2 … un)
 else:
 return L2(x, ω, u2 … un)

L2L1

What actually happens :(

108

L1 L2

def L(x, ω, u):
 if u1 < 0.5:
 return L1(x, ω, u2 … un)
 else:
 return L2(x, ω, u2 … un)

L2L1

What actually happens :(

108

L1 L2

def L(x, ω, u):
 if u1 < 0.5:
 return L1(x, ω, u2 … un)
 else:
 return L2(x, ω, u2 … un)

Solution: path inverses

109

Solution: path inverses

109

u1
u3

u2

Solution: path inverses

109

u1
u3

u2

Solution: path inverses

109

u1
u3

u2

Solution: path inverses

109

u1
u3

u2

Solution: path inverses

109

u1
u3

u2

Solution: path inverses

109

u1
u3

u2

110

Multiplexing + Invertible transitions

[Reversible Jump Metropolis Light Transport using Inverse Mappings, Bitterli 2017]

110

Multiplexing + Invertible transitions

[Reversible Jump Metropolis Light Transport using Inverse Mappings, Bitterli 2017]

110

Multiplexing + Invertible transitions

[Reversible Jump Metropolis Light Transport using Inverse Mappings, Bitterli 2017]

The original Metropolis Light
Transport Algorithm

111

Metropolis Light Transport
[Veach and Guibas 1997]

Mutation and Perturbation strategies

112

Bidirectional mutation

Mutation and Perturbation strategies

112

Bidirectional mutation

Mutation and Perturbation strategies

112

Bidirectional mutation

Mutation and Perturbation strategies

112

Bidirectional mutation

Mutation and Perturbation strategies

112

Bidirectional mutation

Mutation and Perturbation strategies

112

Bidirectional mutation Caustic perturbation

Mutation and Perturbation strategies

112

Bidirectional mutation Caustic perturbation

Light path visualization

113

green

gray = proposal state

= current state

Light path visualization

113

green

gray = proposal state

= current state

Visualization, and issues with this method

114

Visualization, and issues with this method

114

Specular paths

115

Path tracing from
the light source

Specular paths

115

Path tracing from
the camera

Specular paths

115

Bidirectional
path tracing

An observation in flatland

116

Light source Sensor

Mirror

An observation in flatland

116

Light source Sensor

Mirror

An observation in flatland

116

Light source Sensor

Mirror

An observation in flatland

116

Light source Sensor

Mirror

An observation in flatland

116

Light source Sensor

Mirror

The set of paths undergoing specular
reflection or refraction is lower in dimension

than the entire path space.

More formally

117

Reflection Refraction

Express as constraint:

More formally

117

Reflection Refraction

Express as constraint:

Set satisfying all constraints:

(all paths)

More formally

117

Reflection Refraction

Express as constraint:

Set satisfying all constraints:

(all paths)

More formally

117

Reflection Refraction

Express as constraint:

Set satisfying all constraints:

(all paths)

More formally

117

Reflection Refraction

Express as constraint:

Set satisfying all constraints:

(all paths)

More formally

117

Reflection Refraction

Express as constraint:

Set satisfying all constraints:

How this is used in a rendering algorithm?

118

def MCMC_Path_Tracer():
 u = [0.5, …, 0.5]
 while !done:
 u’ = perturb(u)
 # Acceptance probability
 a = L(u’) / L(u)
 if a < rand():
 u = u’

How this is used in a rendering algorithm?

118

def MCMC_Path_Tracer():
 u = [0.5, …, 0.5]
 while !done:
 u’ = perturb(u)
 # Acceptance probability
 a = L(u’) / L(u)
 if a < rand():
 u = u’

How this is used in a rendering algorithm?

118

def MCMC_Path_Tracer():
 u = [0.5, …, 0.5]
 while !done:
 u’ = perturb(u)
 # Acceptance probability
 a = L(u’) / L(u)
 if a < rand():
 u = u’

Manifold walks

Manifold walks

Manifold walks

Manifold walking algorithm

121

Basic idea:

while not there yet:
1. EXTRAPOLATE: Perturb vertices using manifold tangents
2. PROJECT: re-trace extrapolated path

start

target

extrapolate

project

extrapolate

project

Both steps combined

Both steps combined

Manifold Exploration Path Tracing

123

Rough dielectricSmooth dielectric

[15x time-lapse]

Manifold Exploration Path Tracing

123

Rough dielectricSmooth dielectric

[15x time-lapse]

Reference

3D model Rendering

Loss
0.5231

Reference

3D model Rendering

Loss
0.5231

MCMC for Inverse Rendering

125

[Xu et al. 2024] 
 
Markov-Chain Monte Carlo Sampling of 
Visibility Boundaries for Differentiable
Rendering

MCMC in Optimization

Stochastic Gradient Descent (SGD)

Stochastic Gradient Langevin Dynamics
Intro to Bayesian statistics

Bayesian statistics

127

Setup: classification problem

128

Problem statement

Data

Setup: classification problem

128

Problem statement

Data

Setup: classification problem

128

Problem statement

Data

xi ∼ X
i ∈ {1,2,3,⋯}

Setup: classification problem

128

sθ,1

sθ,2

sθ,3

x1

x2

x3

Problem statement

Data

xi ∼ X
i ∈ {1,2,3,⋯}

Setup: classification problem

128

sθ,1

sθ,2

sθ,3

x1

x2

x3

Problem statement

0.09
0.69
0.14

Data

xi ∼ X
i ∈ {1,2,3,⋯}

Setup: classification problem

128

sθ,1

sθ,2

sθ,3

x1

x2

x3

Problem statement

0.09
0.69
0.14

Data

xi ∼ X
i ∈ {1,2,3,⋯}

Setup: classification problem

128

sθ,1

sθ,2

sθ,3

x1

x2

x3

Problem statement

0.09
0.69
0.14

Data

xi ∼ X
i ∈ {1,2,3,⋯}

Setup: classification problem

128

sθ,1

sθ,2

sθ,3

x1

x2

x3

Problem statement

0.09
0.69
0.14

Data

xi ∼ X
i ∈ {1,2,3,⋯}

Bayesian statistics

129

X

Bayesian statistics

129

X
Random variable

Bayesian statistics

129

X
Random variable

∈ [0,1)

Bayesian statistics

130

X ∈ [0,1)

Bayesian statistics

130

Xx ∼
Sampling

∈ [0,1)

Probability density function

131

X ∈ [0,1)x ∼
Sampling

p(x)

Probability density function

Probability density function

131

X ∈ [0,1)x ∼
Sampling

p(x)

Probability density function

Probability density function

131

X ∈ [0,1)x ∼
Sampling

p(x)

Probability density function

𝔼[X] = ∫
∞

−∞
xp(x)dx

Probability density function

131

X ∈ [0,1)x ∼
Sampling

p(x)

Probability density function

𝔼[X] = ∫
∞

−∞
xp(x)dx

Non-negative: p(x) ≥ 0

Probability density function

131

X ∈ [0,1)x ∼
Sampling

p(x)

Probability density function

𝔼[X] = ∫
∞

−∞
xp(x)dx

Non-negative: p(x) ≥ 0

Normalized pdf: ∫ p(x)dx = 1

Joint probability distributions

132

Xx ∼
Sampling

p(x)

p(z)

∈ [0,1)

Joint probability distributions

132

Xx ∼
Sampling

p(x)

p(z) joint distribution

∈ [0,1)

Joint probability distributions

132

Xx ∼
Sampling

p(x)

p(z)

marginal distributions

joint distribution

∈ [0,1)

133

Marginalization

p(x)

p(z)

Joint probability distributions: Marginalization

133

Marginalization

p(x)

p(z)

p(x) = ∫ p(x, z)dz

Joint probability distributions: Marginalization

133

Marginalization

p(x)

p(z)

p(x) = ∫ p(x, z)dz

Joint probability distributions: Marginalization

133

Marginalization

p(x)

p(z)

p(x) = ∫ p(x, z)dz

Joint probability distributions: Marginalization

134

Marginalization

p(x)

p(z)

p(x) = ∫ p(x, z)dz

Joint probability distributions: Marginalization

134

Marginalization

p(x)

p(z)

p(x) = ∫ p(x, z)dz

Joint probability distributions: Marginalization

p(z) = ∫ p(x, z)dx

Conditional probability distributions

135

p(x)

p(z)

p(x |z) =
p(x, z)
p(z)

Conditional probability distributions

135

p(x)

p(z)

p(x |z) =
p(x, z)
p(z)

Conditional probability distributions

135

p(x)

p(z)

p(x |z) =
p(x, z)
p(z)

Conditional probability distributions

135

p(x)

p(z)

p(x |z) =
p(x, z)
p(z)

Conditional probability distributions

135

p(x)

p(z)

p(x |z) =
p(x, z)
p(z)

136

p(x)

p(z)

p(x |z) =
p(x, z)
p(z)

Conditional probability distributions

Conditional probability distributions

137

p(x)

p(z)

p(x |z) =
p(x, z)
p(z)

Likelihood of the data
given the latent variable z

Conditional probability distributions

138

p(x)

p(z)
p(z |x) =

p(x, z)
p(x)

p(x |z) =
p(x, z)
p(z)

Likelihood of the data
given the latent variable z

Conditional probability distributions

138

p(x)

p(z)
p(z |x) =

p(x, z)
p(x)

p(x |z) =
p(x, z)
p(z)

Likelihood of the data
given the latent variable z

Bayes Theorem

Classification

140

Problem statement

Data

Hypothesis θ

Classification

140

sθ,1

sθ,2

sθ,3

x1

x2

x3

Problem statement

Data

Hypothesis θ

Classification

140

sθ,1

sθ,2

sθ,3

x1

x2

x3

Problem statement

Data

0.09
0.69
0.14

Hypothesis θ

Classification

140

sθ,1

sθ,2

sθ,3

x1

x2

x3

Problem statement

Data

0.09
0.69
0.14

Hypothesis θ

Classification

140

sθ,1

sθ,2

sθ,3

x1

x2

x3

Problem statement

Data

0.09
0.69
0.14

Hypothesis θ

Classification

141

Problem statement

Data

Hypothesis

zEncoder Decoder
0.09
0.69
0.14

Bayes Theorem

142

p(z |x) =
p(x |z)p(z)

p(x)
p(z |x)

p(x |z)p(z)
p(x)

zEncoder Decoder

Bayes Theorem

142

p(z |x) =
p(x |z)p(z)

p(x)
p(z |x)

p(x |z)p(z)
p(x)

 : Hypothesis/Latent
 : Data

z
x

zEncoder Decoder

Bayes Theorem

143

zEncoder Decoder

p(z |x) =
p(x |z)p(z)

p(x)
p(z |x)

p(x |z)

p(z)
p(x)

 : Hypothesis/Latent
 : Data

z
x

Bayes Theorem

143

: the likelihood (given your hypothesis,
what is the probabilty of observing)x

zEncoder Decoder

p(z |x) =
p(x |z)p(z)

p(x)
p(z |x)

p(x |z)

p(z)
p(x)

 : Hypothesis/Latent
 : Data

z
x

Bayes Theorem

144

: the likelihood (given your hypothesis,
what is the probabilty of observing)x

zEncoder Decoder

p(z |x) =
p(x |z)p(z)

p(x)

p(z |x)

p(x |z)

p(z)
p(x)

 : Hypothesis/Latent
 : Data

z
x

Bayes Theorem

144

: the likelihood (given your hypothesis,
what is the probabilty of observing)x

zEncoder Decoder

p(z |x) =
p(x |z)p(z)

p(x)

p(z |x)

p(x |z)

p(z)
p(x)

: the posterior (updating your belief
based the data)

 : Hypothesis/Latent
 : Data

z
x

Bayes Theorem

145

: the likelihood (given your hypothesis,
what is the probabilty of observing)x

zEncoder Decoder

p(z |x) =
p(x |z)p(z)

p(x)

p(z |x)

p(x |z)

p(z)

p(x)

: the posterior (updating your belief
based the data)

: prior probability

 : Hypothesis/Latent
 : Data

z
x

Bayes Theorem

146

: the likelihood (given your hypothesis,
what is the probabilty of observing)x

zEncoder Decoder

p(z |x) =
p(x |z)p(z)

p(x)

p(z |x)

p(x |z)

p(z)

p(x): the posterior (updating your belief
based the data)

: prior probability

: marginal likelihood

 : Hypothesis/Latent
 : Data

z
x

Bayesian Inference

147

zEncoder Decoder

Bayesian Inference

147

zEncoder Decoder

Goal: Compute the posterior distribution of model parameters (or)p(z |x) θ z

Bayesian Inference

147

zEncoder Decoder

Goal: Compute the posterior distribution of model parameters (or)p(z |x) θ z

But computing is intractable!p(z |x)

Bayesian Inference

147

zEncoder Decoder

Goal: Compute the posterior distribution of model parameters (or)p(z |x) θ z

But computing is intractable!p(z |x)
- for complex models
- for large datasets

Bayesian Inference

147

zEncoder Decoder

Goal: Compute the posterior distribution of model parameters (or)p(z |x) θ z

But computing is intractable!p(z |x)
- for complex models
- for large datasets

Use for Bayesian inferenceSGD

Stochastic Gradient Descent SGD()

149

Stochastic Gradient Descent SGD()

149

Goal: We want to minimize a loss function ℒ

Stochastic Gradient Descent SGD()

149

Goal: We want to minimize a loss function ℒ

Stochastic Gradient Descent SGD()

149

Goal: We want to minimize a loss function ℒ

Stochastic Gradient Descent SGD()

149

Goal: We want to minimize a loss function ℒ

Stochastic Gradient Descent SGD()

149

Goal: We want to minimize a loss function ℒ

current
xt

Stochastic Gradient Descent SGD()

149

Goal: We want to minimize a loss function ℒ

current
xtxt+1 =

Stochastic Gradient Descent SGD()

149

Goal: We want to minimize a loss function ℒ

current
xt ∇ℒ−xt+1 =

Gradient of
the loss function

Stochastic Gradient Descent SGD()

Stochastic Gradient Descent (SGD)

150

Goal: We want to minimize a loss function ℒ

current
xt ∇ℒ− ηxt+1 =

Gradient of
the loss function

Stochastic Gradient Descent (SGD)

150

Goal: We want to minimize a loss function ℒ

current

Learning rate

xt ∇ℒ− ηxt+1 =

Gradient of
the loss function

Stochastic Gradient Descent (SGD)

151

Goal: We want to minimize a loss function ℒ

SGD in action

current

Learning rate

xt ∇ℒ− ηxt+1 =

Gradient of
the loss function

Stochastic Gradient Descent (SGD)

151

Goal: We want to minimize a loss function ℒ

SGD in action

current

Learning rate

xt ∇ℒ− ηxt+1 =

Gradient of
the loss function

ℒ(x, y) = (1 − x)2 + 100 * (y − x2)2

Stochastic Gradient Descent (SGD)

151

Goal: We want to minimize a loss function ℒ

SGD in action

current

Learning rate

xt ∇ℒ− ηxt+1 =

Gradient of
the loss function

ℒ(x, y) = (1 − x)2 + 100 * (y − x2)2

SGD with Noise (Bayesian SGD)

SGD with noise

153

Goal: We want to minimize a loss function ℒ

SGD with noise in action

xt ∇ℒ− ηxt+1 =

ℒ(x, y) = (1 − x)2 + 100 * (y − x2)2

SGD with noise

153

Goal: We want to minimize a loss function ℒ

SGD with noise in action

xt ∇ℒ− ηxt+1 =

ℒ(x, y) = (1 − x)2 + 100 * (y − x2)2

+ϵt

SGD with noise

153

Goal: We want to minimize a loss function ℒ

SGD with noise in action

xt ∇ℒ− ηxt+1 =

ℒ(x, y) = (1 − x)2 + 100 * (y − x2)2

+ϵt

Stochastic Gradient Langevin dynamics

155

p(x)

Langevin dynamics

155

Euler-Maruyama method to simulate Langevin diffusion:

p(x)

Langevin dynamics

155

Euler-Maruyama method to simulate Langevin diffusion:

p(x)

Langevin dynamics

155

Step size

Euler-Maruyama method to simulate Langevin diffusion:

p(x)

Langevin dynamics

155

Step size

Gaussian noise

Euler-Maruyama method to simulate Langevin diffusion:

p(x)

Langevin dynamics

Stochastic Gradient Langevin Dynamics (SGLD)

xt ∇ℒηxt+1 = −

1x speed

Stochastic Gradient Langevin Dynamics (SGLD)

xt ∇ℒηxt+1 = −

Stochastic Gradient Langevin Dynamics (SGLD)

+ 2ηϵtxt ∇log ℒηxt+1 = −

SGLD in action

1x speed

Stochastic Gradient Langevin Dynamics (SGLD)

+ 2ηϵtxt ∇log ℒηxt+1 = −

SGLD in action

1x speed

Stochastic Gradient Langevin Dynamics (SGLD)

+ 2ηϵtxt ∇log ℒηxt+1 = −

SGLD in action

SGD vs SGLD

SGD w/ noise SGLD

ℒ(x, y) = (1 − x)2 + 100 * (y − x2)2

SGD

SGD vs SGLD

SGD w/ noise SGLD

ℒ(x, y) = (1 − x)2 + 100 * (y − x2)2

SGD

MCMC in Generative AI

What is

160

Generative AI?

Generative AI

161

LLAMA 3.2

162

Generative AI
• Goal: How to learn the underlying distribution of data samples?

162

Generative AI
• Goal: How to learn the underlying distribution of data samples?

162

Generative AI
• Goal: How to learn the underlying distribution of data samples?

xi ∼ pdata(x)
i = {1,2,⋯, n}

162

Generative AI
• Goal: How to learn the underlying distribution of data samples?

xi ∼ pdata(x)
i = {1,2,⋯, n}

162

Generative AI
• Goal: How to learn the underlying distribution of data samples?

xi ∼ pdata(x)
i = {1,2,⋯, n}

?

162

Generative AI
• Goal: How to learn the underlying distribution of data samples?

xi ∼ pdata(x)
i = {1,2,⋯, n}

?

How can we sample from an
unknown data distribution?

163

Generative AI
• Goal: How to learn the underlying distribution of data samples?

xi ∼ pdata(x)
i = {1,2,⋯, n}

?

163

Generative AI
• Goal: How to learn the underlying distribution of data samples?

xi ∼ pdata(x)

pθ(x)

θ

i = {1,2,⋯, n}
?

163

Generative AI
• Goal: How to learn the underlying distribution of data samples?

xi ∼ pdata(x)

pθ(x)

θ

i = {1,2,⋯, n}
?

163

Generative AI
• Goal: How to learn the underlying distribution of data samples?

xi ∼ pdata(x)

pθ(x)

θ
D(pdata, pθ)

i = {1,2,⋯, n}
?

164

165

Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC (Du et al. 2024)

166

Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC (Du et al. 2024)

167

Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC (Du et al. 2024)

From VAEs to Diffusion models

From VAEs to Diffusion models

Variational Autoencoders (VAEs)

From VAEs to Diffusion models

Energy-based models (EBMs)
MCMC methods for EBMs

Variational Autoencoders (VAEs)

From VAEs to Diffusion models

Energy-based models (EBMs)
MCMC methods for EBMs

Variational Autoencoders (VAEs)

Score-based Generative models (SBGMs)
MCMC methods for SBGMs

From VAEs to Diffusion models

Energy-based models (EBMs)
MCMC methods for EBMs

Variational Autoencoders (VAEs)

Score-based Generative models (SBGMs)
MCMC methods for SBGMs

SDE-based diffusion models

From VAEs to Diffusion models

Energy-based models (EBMs)
MCMC methods for EBMs

Variational Autoencoders (VAEs)

Score-based Generative models (SBGMs)
MCMC methods for SBGMs

SDE-based diffusion models

Variational Autoencoders

Variational Autoencoders
VAEs

171

Variational Autoencoders
VAEs

171

Encoder

Variational Autoencoders
VAEs

171

Encoder Decoder

Variational Autoencoders
VAEs

171

μ
σ

Encoder Decoder

Variational Autoencoders
VAEs

171

μ
σ 𝒩(μ, σ)Encoder Decoder

Variational Autoencoders
VAEs

171

μ
σ ∼𝒩(μ, σ)Encoder Decoder

Variational Autoencoders
VAEs

171

μ
σ ∼𝒩(μ, σ) zEncoder Decoder

Variational Autoencoders
VAEs

171

μ
σ ∼𝒩(μ, σ) zEncoder Decoder

172

Our goal is to generate samples from an unknown distribution

p(x)

Data distribution

172

Our goal is to generate samples from an unknown distribution

p(x)

Data distribution

172

Our goal is to generate samples from an unknown distribution

p(x)

Data distribution

172

Our goal is to generate samples from an unknown distribution

p(x)

Data distribution

173

Data distribution

p(x)

Our goal is to generate samples from an unknown distribution

p(z)

173

Data distribution

p(x)

Latent distribution

Our goal is to generate samples from an unknown distribution

p(z)

173

Data distribution

p(x)

Latent distribution

Our goal is to generate samples from an unknown distribution

p(z)

174

Data distribution

p(x)

Latent distribution

p(z)

Our goal is to generate samples from an unknown distribution

174

Data distribution

p(x)

Latent distribution

p(z)

Our goal is to generate samples from an unknown distribution

174

Data distribution

p(x)

Latent distribution

p(z)

Our goal is to generate samples from an unknown distribution

p(z |x)

174

Data distribution

p(x)

Latent distribution

p(z)

Our goal is to generate samples from an unknown distribution

p(z |x)

Posterior distribution

174

Data distribution

p(x)

Latent distribution

p(z)

Our goal is to generate samples from an unknown distribution

p(z |x)

Posterior distribution

174

Data distribution

p(x)

Latent distribution

p(z)

Our goal is to generate samples from an unknown distribution

p(z |x)

Posterior distribution

p(x |z)

174

Data distribution

p(x)

Latent distribution

p(z)

Our goal is to generate samples from an unknown distribution

p(z |x)

Posterior distribution

p(x |z)

Likelihood distribution

174

Data distribution

p(x)

Latent distribution

p(z)

Our goal is to generate samples from an unknown distribution

p(z |x)

Posterior distribution

p(x |z)

Likelihood distribution

We also don’t know
this latent distribution

174

Data distribution

p(x)

Latent distribution

p(z)

Our goal is to generate samples from an unknown distribution

p(z |x)

Posterior distribution

p(x |z)

Likelihood distribution

175

Data distribution

p(x)

Normal distribution

Our goal is to generate samples from an unknown distribution

p(z |x)

Posterior distribution

p(x |z)

Likelihood distribution

p(z)

175

Data distribution

p(x)

Normal distribution

Our goal is to generate samples from an unknown distribution

p(z |x)

Posterior distribution

p(x |z)

Likelihood distribution

= 𝒩(0,1)p(z)

175

Data distribution

p(x)

Normal distribution

Our goal is to generate samples from an unknown distribution

p(z |x)

Posterior distribution

p(x |z)

Likelihood distribution

= 𝒩(0,1)p(z)

175

Data distribution

p(x)

Normal distribution

Our goal is to generate samples from an unknown distribution

p(z |x)

Posterior distribution

p(x |z)

Likelihood distribution

= 𝒩(0,1)p(z)

175

Data distribution

p(x)

Normal distribution

Our goal is to generate samples from an unknown distribution

p(z |x)

Posterior distribution

p(x |z)

Likelihood distribution

= 𝒩(0,1)p(z)?

175

Data distribution

p(x)

Normal distribution

Our goal is to generate samples from an unknown distribution

p(z |x)

Posterior distribution

p(x |z)

Likelihood distribution

= 𝒩(0,1)p(z)?

Variational Bayes

176

Data distribution

p(x)

Normal distribution

Our goal is to generate samples from an unknown distribution

p(z |x)

Posterior distribution

p(x |z)

Likelihood distribution

= 𝒩(0,1)p(z)q(z |x) ≈

Variational Bayes

177

Data distribution

p(x)

Normal distribution

Posterior distribution

p(x |z)

Likelihood distribution

= 𝒩(0,1)p(z)q(z |x) = 𝒩(μ, σ)

Variational Bayes

177

Data distribution

p(x)

Normal distribution

Posterior distribution

p(x |z)

Likelihood distribution

= 𝒩(0,1)p(z)q(z |x) = 𝒩(μ, σ)

Variational Bayes

178

Data distribution

p(x)

Normal distribution

p(x |z)

Likelihood distribution

= 𝒩(0,1)p(z)

Autoencoder Variational Bayes

Encoder

179

Data distribution

p(x)

Normal distribution

= 𝒩(0,1)p(z)

Autoencoder Variational Bayes

Encoder

Decoder

How do we train this auto encoder?

181

Data distribution

p(x)

Normal distribution

Our goal is to generate samples from an unknown distribution

p(z |x)

Posterior distribution

p(x |z)

Likelihood distribution

= 𝒩(0,1)p(z)q(z |x) ≈

Evidence lower bound (ELBO)

182

q(z |x) p(z)p(x |z)

Posterior distributionLikelihood distribution

Evidence lower bound (ELBO)

182

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))q(z |x) p(z)p(x |z)

Posterior distributionLikelihood distribution

Evidence lower bound (ELBO)

182

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))⏟Data consistency

q(z |x) p(z)p(x |z)

Posterior distributionLikelihood distribution

Evidence lower bound (ELBO)

182

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))⏟Data consistency ⏟Regularization

q(z |x) p(z)p(x |z)

Posterior distributionLikelihood distribution

ELBO: Likelihood as an termL2

183

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))
Data consistency Regularization

Data distribution

ELBO: Likelihood as an termL2

183

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))
Data consistency Regularization

Data distribution

ELBO: Likelihood as an termL2

183

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))
Data consistency Regularization

Data distribution

ELBO: Likelihood as an termL2

183

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))
Data consistency Regularization

Data distribution

q(z |x)

ELBO: Likelihood as an termL2

183

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))
Data consistency Regularization

Data distribution

q(z |x)

ELBO: Likelihood as an termL2

183

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))
Data consistency Regularization

Data distribution

q(z |x)

ELBO: Likelihood as an termL2

183

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))
Data consistency Regularization

Data distribution

q(z |x)

ELBO: Likelihood as an termL2

183

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))
Data consistency Regularization

Data distribution

q(z |x)

p(x |z)

ELBO: Likelihood as an termL2

183

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))
Data consistency Regularization

Data distribution

q(z |x)

𝔼q(z|x)[log p(x |z)] = L2

p(x |z)

184

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))
Data consistency Regularization

ELBO: KL divergence term

184

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))
Data consistency Regularization

ELBO: KL divergence term

184

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))
Data consistency Regularization

𝒩(μ, σ)

ELBO: KL divergence term

185

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))
Data consistency Regularization

q(z |x) p(z)

—

Evidence lower bound (ELBO)

186

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))

Evidence lower bound (ELBO)

186

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))⏟L2

Evidence lower bound (ELBO)

186

ℒ(x) = 𝔼q(z|x)[log p(x |z)] − KL(q(z |x) |p(z))⏟L2 ⏟Latent space regularization

187

With VAEs: 
Results are good but slightly blurred

188

Encoder Decoder
μ
σ μ + σ ⋅ ϵ z

188

Encoder Decoder
μ
σ μ + σ ⋅ ϵ z

Cons:

188

Encoder Decoder
μ
σ μ + σ ⋅ ϵ z

Cons:

- Model architectures are restricted

188

Encoder Decoder
μ
σ μ + σ ⋅ ϵ z

Cons:

- Model architectures are restricted

- We cannot pick an arbitrary neural network that can take as input data
samples and output a scalar.

188

Encoder Decoder
μ
σ μ + σ ⋅ ϵ z

Cons:

- Model architectures are restricted

- We cannot pick an arbitrary neural network that can take as input data
samples and output a scalar.

- It has to be a valid PDF

188

Encoder Decoder
μ
σ μ + σ ⋅ ϵ z

Cons:

- Model architectures are restricted

- We cannot pick an arbitrary neural network that can take as input data
samples and output a scalar.

- It has to be a valid PDF

- In VAEs, we use approximations to circumvent these issues

From VAEs to Diffusion models

Energy-based models (EBMs)
MCMC methods for EBMs

Variational Autoencoders (VAEs)

Score-based Generative models (SBGMs)
MCMC methods for SBGMs

SDE-based diffusion models

Energy-based models

190

Energy-based models

• Very flexible model architectures

191

Energy-based models

• Very flexible model architectures

• Stable training

191

Energy-based models

• Very flexible model architectures

• Stable training

• Relatively high sample quality

191

Energy-based models

• Very flexible model architectures

• Stable training

• Relatively high sample quality

• Very close to diffusion models

191

Energy-based models

• Very flexible model architectures

• Stable training

• Relatively high sample quality

• Very close to diffusion models

• Flexible composition

191

Bayesian statistics: Probability density function

192

Xx ∼
Sampling

p(x)

Probability density function

• PDFs are the key building blocks in generative modeling

Bayesian statistics: Probability density function

192

Xx ∼
Sampling

p(x)

Probability density function

• PDFs are the key building blocks in generative modeling

Bayesian statistics: Probability density function

192

Xx ∼
Sampling

p(x)

Probability density function

Non-negative: p(x) ≥ 0

• PDFs are the key building blocks in generative modeling

Bayesian statistics: Probability density function

192

Xx ∼
Sampling

p(x)

Probability density function

Non-negative: p(x) ≥ 0

Normalized pdf: ∫ p(x)dx = 1

• PDFs are the key building blocks in generative modeling

Parameterizing probability distributions

193

Coming up with a non-negative function is not hardpθ(x)

Non-negative: p(x) ≥ 0

Parameterizing probability distributions

193

Given any function or an arbitrary neural network , we can chose: fθ(x)

Coming up with a non-negative function is not hardpθ(x)

Non-negative: p(x) ≥ 0

Parameterizing probability distributions

193

Given any function or an arbitrary neural network , we can chose: fθ(x)

Coming up with a non-negative function is not hardpθ(x)

gθ(x) = fθ(x)2

Non-negative: p(x) ≥ 0

Parameterizing probability distributions

193

Given any function or an arbitrary neural network , we can chose: fθ(x)

Coming up with a non-negative function is not hardpθ(x)

gθ(x) = fθ(x)2

gθ(x) = exp(fθ(x))

Non-negative: p(x) ≥ 0

Parameterizing probability distributions

193

Given any function or an arbitrary neural network , we can chose: fθ(x)

Coming up with a non-negative function is not hardpθ(x)

gθ(x) = fθ(x)2

gθ(x) = exp(fθ(x))

gθ(x) = | fθ(x) |

Non-negative: p(x) ≥ 0

Parameterizing probability distributions

194

Parameterizing probability distributions

194

Normalized pdf: ∫ p(x)dx = 1

Parameterizing probability distributions

194

This property ensures that total volume is fixed: i.e. increasing guarantees pθ(xtrain)

that becomes more likely (compared to the rest).xtrain

Normalized pdf: ∫ p(x)dx = 1

Parameterizing probability distributions

195

Parameterizing probability distributions

195

Problem: is easy, but might not be normalizedgθ(x) ≥ 0 gθ(x)

Parameterizing probability distributions

195

Problem: is easy, but might not be normalizedgθ(x) ≥ 0 gθ(x)

For example: Energy-based model

- we assume the following form of gθ(x) = exp fθ(x)

Energy-based model

196

pθ(x) =
1

Z(θ)
exp(fθ(x)) Z(θ) = ∫ exp(fθ(x))dx

Energy-based model

196

pθ(x) =
1

Z(θ)
exp(fθ(x)) Z(θ) = ∫ exp(fθ(x))dx

The normalization constant is also called
a partition function

Energy-based model

196

pθ(x) =
1

Z(θ)
exp(fθ(x)) Z(θ) = ∫ exp(fθ(x))dx

The normalization constant is also called
a partition function

Why exponential of ?fθ(x)

Energy-based model

196

pθ(x) =
1

Z(θ)
exp(fθ(x)) Z(θ) = ∫ exp(fθ(x))dx

The normalization constant is also called
a partition function

Why exponential of ?fθ(x)

Want to capture big variations in the probability, log-space is a natural choice

Energy-based model

196

pθ(x) =
1

Z(θ)
exp(fθ(x)) Z(θ) = ∫ exp(fθ(x))dx

The normalization constant is also called
a partition function

Why exponential of ?fθ(x)

Want to capture big variations in the probability, log-space is a natural choice
In statistical physics, these distributions arise under fairly general assumptions

Energy-based model

196

pθ(x) =
1

Z(θ)
exp(fθ(x)) Z(θ) = ∫ exp(fθ(x))dx

The normalization constant is also called
a partition function

Why exponential of ?fθ(x)

Want to capture big variations in the probability, log-space is a natural choice
In statistical physics, these distributions arise under fairly general assumptions

• is called the energy, hence the name.−fθ(x)

Energy-based model

197

Z(θ) = ∫ exp(fθ(x))dxpθ(x) =
1

Z(θ)
exp(fθ(x))

Energy-based model

197

log pθ(x) = log [1
Z(θ)

exp(fθ(x))]

Z(θ) = ∫ exp(fθ(x))dxpθ(x) =
1

Z(θ)
exp(fθ(x))

Energy-based model

197

log pθ(x) = log [1
Z(θ)

exp(fθ(x))]

Z(θ) = ∫ exp(fθ(x))dx

log pθ(x) = log exp(fθ(x)) − log Z(θ)

pθ(x) =
1

Z(θ)
exp(fθ(x))

Energy-based model

197

log pθ(x) = log [1
Z(θ)

exp(fθ(x))]

Z(θ) = ∫ exp(fθ(x))dx

log pθ(x) = log exp(fθ(x)) − log Z(θ)

log pθ(x) = fθ(x) − log Z(θ)

pθ(x) =
1

Z(θ)
exp(fθ(x))

Energy-based model

197

log pθ(x) = log [1
Z(θ)

exp(fθ(x))]

Z(θ) = ∫ exp(fθ(x))dx

log pθ(x) = log exp(fθ(x)) − log Z(θ)

log pθ(x) = fθ(x) − log Z(θ)

pθ(x) =
1

Z(θ)
exp(fθ(x))

This term is called the log likelihood

Energy-based model

198

Z(θ) = ∫ exp(fθ(x))dxlog pθ(x) = fθ(x) − log Z(θ)

Energy-based model

198

Z(θ) = ∫ exp(fθ(x))dxlog pθ(x) = fθ(x) − log Z(θ)

To train the model, we want to maximize the log-likelihood:

Energy-based model

198

Z(θ) = ∫ exp(fθ(x))dxlog pθ(x) = fθ(x) − log Z(θ)

To train the model, we want to maximize the log-likelihood:

max
θ

(fθ(xtrain) − log Z(θ))

Energy-based model

198

Z(θ) = ∫ exp(fθ(x))dxlog pθ(x) = fθ(x) − log Z(θ)

To train the model, we want to maximize the log-likelihood:

max
θ

(fθ(xtrain) − log Z(θ))

We need to compute the gradient of the log-likelihood:

Energy-based model

198

Z(θ) = ∫ exp(fθ(x))dxlog pθ(x) = fθ(x) − log Z(θ)

To train the model, we want to maximize the log-likelihood:

max
θ

(fθ(xtrain) − log Z(θ))

We need to compute the gradient of the log-likelihood:

∇θ fθ(xtrain) − ∇θlog Z(θ)

Energy-based model

199

Z(θ) = ∫ exp(fθ(x))dx

∇θ fθ(xtrain) − ∇θlog Z(θ) Gradient of the log-likelihood

Energy-based model

199

Z(θ) = ∫ exp(fθ(x))dx

∇θ fθ(xtrain) − ∇θlog Z(θ) Gradient of the log-likelihood

= ∇θ fθ(xtrain) −
∇θZ(θ)

Z(θ)
differentiating the log term

Energy-based model

199

Z(θ) = ∫ exp(fθ(x))dx

∇θ fθ(xtrain) − ∇θlog Z(θ) Gradient of the log-likelihood

= ∇θ fθ(xtrain) −
∇θZ(θ)

Z(θ)

= ∇θ fθ(xtrain) −
∫ ∇θexp(fθ(x))dx

Z(θ)

differentiating the log term

using the definition of Z(θ)

Energy-based model

199

Z(θ) = ∫ exp(fθ(x))dx

∇θ fθ(xtrain) − ∇θlog Z(θ) Gradient of the log-likelihood

= ∇θ fθ(xtrain) −
∇θZ(θ)

Z(θ)

= ∇θ fθ(xtrain) −
∫ ∇θexp(fθ(x))dx

Z(θ)

= ∇θ fθ(xtrain) −
∫ exp(fθ(x))∇θ fθ(x)dx

Z(θ)

differentiating the log term

using the definition of Z(θ)

differentiating the exponent term

Energy-based model

199

Z(θ) = ∫ exp(fθ(x))dx

∇θ fθ(xtrain) − ∇θlog Z(θ) Gradient of the log-likelihood

= ∇θ fθ(xtrain) −
∇θZ(θ)

Z(θ)

= ∇θ fθ(xtrain) −
∫ ∇θexp(fθ(x))dx

Z(θ)

= ∇θ fθ(xtrain) −
∫ exp(fθ(x))∇θ fθ(x)dx

Z(θ)

= ∇θ fθ(xtrain) − ∫
exp(fθ(x))

Z(θ)
∇θ fθ(x)dx

differentiating the log term

using the definition of Z(θ)

differentiating the exponent term

rearranging the terms

Energy-based model

199

Z(θ) = ∫ exp(fθ(x))dx

∇θ fθ(xtrain) − ∇θlog Z(θ) Gradient of the log-likelihood

= ∇θ fθ(xtrain) −
∇θZ(θ)

Z(θ)

= ∇θ fθ(xtrain) −
∫ ∇θexp(fθ(x))dx

Z(θ)

= ∇θ fθ(xtrain) −
∫ exp(fθ(x))∇θ fθ(x)dx

Z(θ)

= ∇θ fθ(xtrain) − ∫
exp(fθ(x))

Z(θ)
∇θ fθ(x)dx

differentiating the log term

using the definition of Z(θ)

differentiating the exponent term

rearranging the terms
pθ(x)

Energy-based model

199

Z(θ) = ∫ exp(fθ(x))dx

∇θ fθ(xtrain) − ∇θlog Z(θ) Gradient of the log-likelihood

= ∇θ fθ(xtrain) −
∇θZ(θ)

Z(θ)

= ∇θ fθ(xtrain) −
∫ ∇θexp(fθ(x))dx

Z(θ)

= ∇θ fθ(xtrain) −
∫ exp(fθ(x))∇θ fθ(x)dx

Z(θ)

= ∇θ fθ(xtrain) − ∫
exp(fθ(x))

Z(θ)
∇θ fθ(x)dx

= ∇θ fθ(xtrain) − 𝔼xsample
[∇θ fθ(xsample)]

differentiating the log term

using the definition of Z(θ)

differentiating the exponent term

rearranging the terms
pθ(x)

Energy-based model

200

∇θ fθ(xtrain) − ∇θlog Z(θ)

Gradient of the log-likelihood

= ∇θ fθ(xtrain) − 𝔼xsample
[∇θ fθ(xsample)]

Energy-based model

200

∇θ fθ(xtrain) − ∇θlog Z(θ)

Gradient of the log-likelihood

= ∇θ fθ(xtrain) − 𝔼xsample
[∇θ fθ(xsample)]

≈ ∇θ fθ(xtrain) − ∇θ fθ(xsample)

Energy-based model

200

∇θ fθ(xtrain) − ∇θlog Z(θ)

Gradient of the log-likelihood

= ∇θ fθ(xtrain) − 𝔼xsample
[∇θ fθ(xsample)]

≈ ∇θ fθ(xtrain) − ∇θ fθ(xsample)

which is a 1-sample Monte Carlo estimator

Energy-based model

200

∇θ fθ(xtrain) − ∇θlog Z(θ)

Gradient of the log-likelihood

= ∇θ fθ(xtrain) − 𝔼xsample
[∇θ fθ(xsample)]

≈ ∇θ fθ(xtrain) − ∇θ fθ(xsample)

which is a 1-sample Monte Carlo estimator

xsample ∼
exp(fθ(x))

Z(θ)

Energy-based model

200

∇θ fθ(xtrain) − ∇θlog Z(θ)

Gradient of the log-likelihood

= ∇θ fθ(xtrain) − 𝔼xsample
[∇θ fθ(xsample)]

≈ ∇θ fθ(xtrain) − ∇θ fθ(xsample)

which is a 1-sample Monte Carlo estimator

xsample ∼
exp(fθ(x))

Z(θ)

This is an unbiased estimator of a true gradient.

Energy-based model

200

∇θ fθ(xtrain) − ∇θlog Z(θ)

Gradient of the log-likelihood

= ∇θ fθ(xtrain) − 𝔼xsample
[∇θ fθ(xsample)]

≈ ∇θ fθ(xtrain) − ∇θ fθ(xsample)

which is a 1-sample Monte Carlo estimator

xsample ∼
exp(fθ(x))

Z(θ)

This is an unbiased estimator of a true gradient.

Contrastive-Divergence method

Energy-based model

200

∇θ fθ(xtrain) − ∇θlog Z(θ)

Gradient of the log-likelihood

= ∇θ fθ(xtrain) − 𝔼xsample
[∇θ fθ(xsample)]

≈ ∇θ fθ(xtrain) − ∇θ fθ(xsample)

which is a 1-sample Monte Carlo estimator

xsample ∼
exp(fθ(x))

Z(θ)

This is an unbiased estimator of a true gradient.

How to sample?

Contrastive-Divergence method

Sampling from Energy-based models

201

How to sample?

Sampling from Energy-based models

201

How to sample?

Use an iterative approach called Metropolis-Hastings MCMC:

Sampling from Energy-based models

201

How to sample?

Use an iterative approach called Metropolis-Hastings MCMC:

• Initialize randomly at x0 ∼ π(x) t = 0

Sampling from Energy-based models

201

How to sample?

Use an iterative approach called Metropolis-Hastings MCMC:

• Initialize randomly at x0 ∼ π(x) t = 0
• Repeat for :t = 0,1,2,⋯, T − 1

Sampling from Energy-based models

201

How to sample?

Use an iterative approach called Metropolis-Hastings MCMC:

• Initialize randomly at x0 ∼ π(x) t = 0

• noisex′ = xt +
• Repeat for :t = 0,1,2,⋯, T − 1

Sampling from Energy-based models

201

How to sample?

Use an iterative approach called Metropolis-Hastings MCMC:

• Initialize randomly at x0 ∼ π(x) t = 0

• noisex′ = xt +
• If let fθ(x′) > fθ(xt) xt+1 = x′

• Repeat for :t = 0,1,2,⋯, T − 1

Sampling from Energy-based models

201

How to sample?

Use an iterative approach called Metropolis-Hastings MCMC:

• Initialize randomly at x0 ∼ π(x) t = 0

• noisex′ = xt +
• If let fθ(x′) > fθ(xt) xt+1 = x′

• Otherwise let with probability xt+1 = x′ exp(fθ(x′) − fθ(xt))

occasionally take downhill moves
• Repeat for :t = 0,1,2,⋯, T − 1

Sampling from Energy-based models

201

How to sample?

Use an iterative approach called Metropolis-Hastings MCMC:

• Initialize randomly at x0 ∼ π(x) t = 0

• noisex′ = xt +
• If let fθ(x′) > fθ(xt) xt+1 = x′

• Otherwise let with probability xt+1 = x′ exp(fθ(x′) − fθ(xt))

occasionally take downhill moves

Works in theory, but can take very long to converge.

• Repeat for :t = 0,1,2,⋯, T − 1

202

202

Using Contrastive Divergence to train an EBM requires sampling even
during the training phase, not just the inference phase.

202

Using Contrastive Divergence to train an EBM requires sampling even
during the training phase, not just the inference phase.

Even if you have EBM trained, generating samples is very expensive

202

Using Contrastive Divergence to train an EBM requires sampling even
during the training phase, not just the inference phase.

Even if you have EBM trained, generating samples is very expensive

Can we do better?

Unadjusted Langevin MCMC

Sampling from EBMs:

204

Unadjusted Langevin MCMC

Sampling from EBMs:

204

• Initialize randomly at x0 t = 0

Unadjusted Langevin MCMC

Sampling from EBMs:

204

• Initialize randomly at x0 t = 0

• Repeat for t = 0,1,2,⋯T − 1 :

Unadjusted Langevin MCMC

Sampling from EBMs:

204

• Initialize randomly at x0 t = 0

• ϵt ∼ 𝒩(0,1)

• Repeat for t = 0,1,2,⋯T − 1 :

Unadjusted Langevin MCMC

Sampling from EBMs:

204

• Initialize randomly at x0 t = 0

• ϵt ∼ 𝒩(0,1)

• Repeat for t = 0,1,2,⋯T − 1 :

• xt+1 = xt + τ∇xlog pθ(x) |x=xt
+ 2τϵt

Unadjusted Langevin MCMC

Sampling from EBMs:

204

• Initialize randomly at x0 t = 0

• ϵt ∼ 𝒩(0,1)

• Repeat for t = 0,1,2,⋯T − 1 :

• xt+1 = xt + τ∇xlog pθ(x) |x=xt
+ 2τϵt

Unadjusted Langevin MCMC

Sampling from EBMs:

204

• Initialize randomly at x0 t = 0

• ϵt ∼ 𝒩(0,1)

• Repeat for t = 0,1,2,⋯T − 1 :

• xt+1 = xt + τ∇xlog pθ(x) |x=xt
+ 2τϵt

Unadjusted Langevin MCMC

Properties:

Sampling from EBMs:

204

• Initialize randomly at x0 t = 0

• ϵt ∼ 𝒩(0,1)

No rejection involved but converges to a sample from
when and

xt pθ(x)
T → ∞ τ → 0

• Repeat for t = 0,1,2,⋯T − 1 :

• xt+1 = xt + τ∇xlog pθ(x) |x=xt
+ 2τϵt

Unadjusted Langevin MCMC

Properties:

Unadjusted Langevin dynamics: Examples

205

Unadjusted Langevin dynamics: Examples

205

Step size =0.1τ

Unadjusted Langevin dynamics: Examples

205

Step size =0.1τ

Unadjusted Langevin dynamics: Examples

205

Step size =0.1τ

Unadjusted Langevin dynamics: Examples

205

Step size =0.1τ Step size =1τ

Unadjusted Langevin dynamics: Examples

205

Step size =0.1τ Step size =1τ

Sampling from EBMs:

206

• Initialize randomly at x0 t = 0

• ϵt ∼ 𝒩(0,1)

• Repeat for t = 0,1,2,⋯T − 1 :

• xt+1 = xt + τ∇xlog pθ(x) |x=xt
+ 2τϵt

Unadjusted Langevin MCMC

Sampling from EBMs:

206

• Initialize randomly at x0 t = 0

• ϵt ∼ 𝒩(0,1)

• Repeat for t = 0,1,2,⋯T − 1 :

• xt+1 = xt + τ∇xlog pθ(x) |x=xt
+ 2τϵt

Unadjusted Langevin MCMC

207

log pθ(x) = fθ(x) − log Z(θ)

• xt+1 = xt + τ∇xlog pθ(x) |x=xt
+ 2τϵt

EBMs: Computing the gradient of log-likelihood

207

log pθ(x) = fθ(x) − log Z(θ)

• xt+1 = xt + τ∇xlog pθ(x) |x=xt
+ 2τϵt

EBMs: Computing the gradient of log-likelihood

Z(θ) = ∫ exp(fθ(x))dx

pθ(x) =
1

Z(θ)
exp(fθ(x))

207

log pθ(x) = fθ(x) − log Z(θ)

∇xlog pθ(x) = ∇x(fθ(x) − log Z(θ))

• xt+1 = xt + τ∇xlog pθ(x) |x=xt
+ 2τϵt

EBMs: Computing the gradient of log-likelihood

Z(θ) = ∫ exp(fθ(x))dx

pθ(x) =
1

Z(θ)
exp(fθ(x))

207

log pθ(x) = fθ(x) − log Z(θ)

∇xlog pθ(x) = ∇x(fθ(x) − log Z(θ)) Gradient is wrt and not x θ

• xt+1 = xt + τ∇xlog pθ(x) |x=xt
+ 2τϵt

EBMs: Computing the gradient of log-likelihood

Z(θ) = ∫ exp(fθ(x))dx

pθ(x) =
1

Z(θ)
exp(fθ(x))

207

log pθ(x) = fθ(x) − log Z(θ)

∇xlog pθ(x) = ∇x(fθ(x) − log Z(θ))

∇xlog pθ(x) = ∇x fθ(x) − ∇xlog Z(θ)

Gradient is wrt and not x θ

• xt+1 = xt + τ∇xlog pθ(x) |x=xt
+ 2τϵt

EBMs: Computing the gradient of log-likelihood

Z(θ) = ∫ exp(fθ(x))dx

pθ(x) =
1

Z(θ)
exp(fθ(x))

207

log pθ(x) = fθ(x) − log Z(θ)

∇xlog pθ(x) = ∇x(fθ(x) − log Z(θ))

∇xlog pθ(x) = ∇x fθ(x) − ∇xlog Z(θ)

Gradient is wrt and not x θ

is zero

• xt+1 = xt + τ∇xlog pθ(x) |x=xt
+ 2τϵt

EBMs: Computing the gradient of log-likelihood

Z(θ) = ∫ exp(fθ(x))dx

pθ(x) =
1

Z(θ)
exp(fθ(x))

207

log pθ(x) = fθ(x) − log Z(θ)

∇xlog pθ(x) = ∇x(fθ(x) − log Z(θ))

∇xlog pθ(x) = ∇x fθ(x) − ∇xlog Z(θ)

∇xlog pθ(x) = ∇x fθ(x)

Gradient is wrt and not x θ

is zero

• xt+1 = xt + τ∇xlog pθ(x) |x=xt
+ 2τϵt

EBMs: Computing the gradient of log-likelihood

Z(θ) = ∫ exp(fθ(x))dx

pθ(x) =
1

Z(θ)
exp(fθ(x))

Pros & Cons of unadjusted Langevin MCMC

• In practice, the number of steps are lesser than MH approach

208

Pros & Cons of unadjusted Langevin MCMC

• In practice, the number of steps are lesser than MH approach

• However, convergence slows down as dimensionality grows

208

Can we train EBMs without sampling?

209

From VAEs to Diffusion models

Energy-based models (EBMs)
MCMC methods for EBMs

Variational Autoencoders (VAEs)

Score-based Generative models (SBGMs)
MCMC methods for SBGMs

SDE-based diffusion models

Score-based EBMs

Energy-based model

212

pθ(x) =
exp(fθ(x))

Z(θ)

Energy-based model

212

pθ(x) =
exp(fθ(x))

Z(θ)

log pθ(x) = log exp(fθ(x)) − log Z(θ)

Energy-based model

212

pθ(x) =
exp(fθ(x))

Z(θ)

log pθ(x) = log exp(fθ(x)) − log Z(θ)

log pθ(x) = log fθ(x) − log Z(θ)

Energy-based model

212

pθ(x) =
exp(fθ(x))

Z(θ)

 sθ(x) = ∇xlog pθ(x)

log pθ(x) = log exp(fθ(x)) − log Z(θ)

log pθ(x) = log fθ(x) − log Z(θ)

Score function for EBMs

Score function: how is it different from a PDF?

213

Score function: how is it different from a PDF?

213

 sθ(x) = ∇xlog pθ(x)

Score function: how is it different from a PDF?

213

 sθ(x) = ∇xlog pθ(x)

Gaussian distribution:

Score function: how is it different from a PDF?

213

 sθ(x) = ∇xlog pθ(x)

Gaussian distribution:

 pθ(x) =
1

2πσ
exp (−

(x − μ)
σ2)

Score function: how is it different from a PDF?

213

 sθ(x) = ∇xlog pθ(x)

 sθ(x) = −
(x − μ)

σ2

Gaussian distribution:

 pθ(x) =
1

2πσ
exp (−

(x − μ)
σ2)

Score function: how is it different from a PDF?

213

 sθ(x) = ∇xlog pθ(x)

 sθ(x) = −
(x − μ)

σ2

Gaussian distribution:

 pθ(x) =
1

2πσ
exp (−

(x − μ)
σ2)

Score function: how is it different from a PDF?

213

 sθ(x) = ∇xlog pθ(x)

 sθ(x) = −
(x − μ)

σ2

Gaussian distribution:

 pθ(x) =
1

2πσ
exp (−

(x − μ)
σ2)

Score: vector field
vs

PDF: scalar value

Score matching

214

 sθ(x) = ∇xlog pθ(x)

∇xlog p(x) ∇xlog q(x)

Score matching

215

∇xlog p(x) ∇xlog q(x)

 sθ(x) = ∇xlog pθ(x)

Score matching

215

 DF(p, q) =
1
2

𝔼x∼p [| |∇xlog p(x) − ∇xlog q(x) | |2
2]∇xlog p(x) ∇xlog q(x)

 sθ(x) = ∇xlog pθ(x)

Score matching

215

Fischer divergence: If two PDFs and are similar, their score vector field

should be similar:

p(x) q(x)

 DF(p, q) =
1
2

𝔼x∼p [| |∇xlog p(x) − ∇xlog q(x) | |2
2]∇xlog p(x) ∇xlog q(x)

 sθ(x) = ∇xlog pθ(x)

Score matching

216

Fischer divergence: If two PDFs and are similar, their score vector field

should be similar:

p(x) q(x)

 DF(p, q) =
1
2

𝔼x∼p [| |∇xlog p(x) − ∇xlog q(x) | |2
2]

 sθ(x) = ∇xlog pθ(x)

Score matching

216

Fischer divergence: If two PDFs and are similar, their score vector field

should be similar:

p(x) q(x)

 DF(p, q) =
1
2

𝔼x∼p [| |∇xlog p(x) − ∇xlog q(x) | |2
2]

Score matching minimizes the Fischer divergence between and the EBMpdata(x)

pθ(x) ∝ exp(fθ(x))

 sθ(x) = ∇xlog pθ(x)

Score matching

217

 DF(p, q) =
1
2

𝔼x∼p [| |∇xlog p(x) − ∇xlog q(x) | |2
2]

Score matching minimizes the Fischer divergence between and the EBM pdata(x)

pθ(x) ∝ exp(fθ(x))

=

 sθ(x) = ∇xlog pθ(x)

Score matching

217

 DF(p, q) =
1
2

𝔼x∼p [| |∇xlog p(x) − ∇xlog q(x) | |2
2]

1
2

𝔼x∼p [| |∇xlog pdata(x) − sθ(x) | |2
2]

Score matching minimizes the Fischer divergence between and the EBM pdata(x)

pθ(x) ∝ exp(fθ(x))

=

 sθ(x) = ∇xlog pθ(x)

Score matching

218

1
2

𝔼x∼p [| |∇xlog pdata(x) − sθ(x) | |2
2]

 sθ(x) = ∇xlog pθ(x)

Score matching

218

1
2

𝔼x∼p [| |∇xlog pdata(x) − sθ(x) | |2
2]

How to deal with given only samples? Use integration by parts! ∇xlog pdata(x)

 sθ(x) = ∇xlog pθ(x)

Score matching

218

1
2

𝔼x∼p [| |∇xlog pdata(x) − sθ(x) | |2
2]

How to deal with given only samples? Use integration by parts! ∇xlog pdata(x)

 𝔼x∼p [1
2

| |∇xlog pθ(x) | |2
2 + tr(∇2

x log pθ(x))]

 sθ(x) = ∇xlog pθ(x)

Score matching

218

1
2

𝔼x∼p [| |∇xlog pdata(x) − sθ(x) | |2
2]

How to deal with given only samples? Use integration by parts! ∇xlog pdata(x)

 𝔼x∼p [1
2

| |∇xlog pθ(x) | |2
2 + tr(∇2

x log pθ(x))]

 sθ(x) = ∇xlog pθ(x)

Score matching

219

𝔼x∼p [1
2

| |∇xlog pθ(x) | |2
2 + tr(∇2

x log pθ(x))]

Score matching

219

𝔼x∼p [1
2

| |∇xlog pθ(x) | |2
2 + tr(∇2

x log pθ(x))]
Sample from a mini-batch of datapoints {x1, x2, ⋯, xn}

Score matching

219

𝔼x∼p [1
2

| |∇xlog pθ(x) | |2
2 + tr(∇2

x log pθ(x))]
Sample from a mini-batch of datapoints {x1, x2, ⋯, xn}

Estimate the score matching loss with empirical mean over all data points

Score matching

219

𝔼x∼p [1
2

| |∇xlog pθ(x) | |2
2 + tr(∇2

x log pθ(x))]
Sample from a mini-batch of datapoints {x1, x2, ⋯, xn}

Estimate the score matching loss with empirical mean over all data points
1
n

n

∑
i=1

𝔼x∼pdata [1
2

| |∇xlog pθ(xi) | |2
2 + tr(∇2

x log pθ(xi))]

Score matching

220

Sample from a mini-batch of datapoints {x1, x2, ⋯, xn}

Estimate the score matching loss with empirical mean over all data points

1
n

n

∑
i=1

𝔼x∼pdata [1
2

| |∇xlog pθ(xi) | |2
2 + tr(∇2

x log pθ(xi))]

Score matching

220

Sample from a mini-batch of datapoints {x1, x2, ⋯, xn}

Estimate the score matching loss with empirical mean over all data points

Perform stochastic gradient descent (SGD)

1
n

n

∑
i=1

𝔼x∼pdata [1
2

| |∇xlog pθ(xi) | |2
2 + tr(∇2

x log pθ(xi))]

Score matching

220

Sample from a mini-batch of datapoints {x1, x2, ⋯, xn}

Estimate the score matching loss with empirical mean over all data points

Perform stochastic gradient descent (SGD)

No need to sample from the EBMs!

1
n

n

∑
i=1

𝔼x∼pdata [1
2

| |∇xlog pθ(xi) | |2
2 + tr(∇2

x log pθ(xi))]

Score matching for EBMs

221

1
n

n

∑
i=1

𝔼x∼pdata [1
2

| |∇xlog pθ(xi) | |2
2 + tr(∇2

x log pθ(xi))]

Score matching for EBMs

221

Caveat: The Hessian term is computationally very expensive for large
models.

tr(∇2
x log pθ(x))

1
n

n

∑
i=1

𝔼x∼pdata [1
2

| |∇xlog pθ(xi) | |2
2 + tr(∇2

x log pθ(xi))]

Score-based generative models

222

Score-based generative models

223

EBMs

Score-based models

Score estimation by training score-based models

224

PDF

pdata(x)

Score estimation by training score-based models

224

PDF

pdata(x)

Score estimation by training score-based models

224

PDF Data samples

pdata(x)

Score estimation by training score-based models

224

PDF Data samples Score function

sθ(x) ≈ ∇xlog pdata(x)pdata(x)

Score estimation by training score-based models

224

PDF Data samples Score function

?

sθ(x) ≈ ∇xlog pdata(x)pdata(x)

Score estimation by training score-based models

225

sθ(x) ≈ ∇xlog pdata(x)

Score matching:

Score estimation by training score-based models

225

sθ(x) ≈ ∇xlog pdata(x)

Objective: Minimize the difference between a predicted score vector field wrt
the ground truth

Score matching:

Score estimation by training score-based models

226

PDF Data samples

pdata(x)

Score estimation by training score-based models

226

PDF Data samples Score function

sθ(x) ≈ ∇xlog pdata(x)pdata(x)

Score estimation by training score-based models

226

PDF Data samples Score function

sθ(x) ≈ ∇xlog pdata(x)pdata(x)

Score estimation by training score-based models

226

PDF Data samples Score function

Score
Matching

sθ(x) ≈ ∇xlog pdata(x)pdata(x)

How do we generate samples?

227

Role of MCMC in Score-based Models

Sampling in score-based generative models

228

Data samples

Sampling in score-based generative models

228

Score
matching

Data samples

Sampling in score-based generative models

228

Score
matching

Data samples Scores
sθ(x) ≈ ∇xlog pdata(x)

Sampling in score-based generative models

228

Score
matching

Data samples Scores New samples
sθ(x) ≈ ∇xlog pdata(x)

Sampling in score-based generative models

228

Score
matching

Data samples Scores New samples
sθ(x) ≈ ∇xlog pdata(x)

?

From scores to samples: Langevin MCMC

229

Scores
sθ(x) ≈ ∇xlog pdata(x)

Score
matching

From scores to samples: Langevin MCMC

230

Scores
sθ(x) ≈ ∇xlog pdata(x)

Follow the score

Score
matching

From scores to samples: Langevin MCMC

230

Scores
sθ(x) ≈ ∇xlog pdata(x)

Follow the score

x̃t+1 = x̃t +
τ
2

sθ(x̃t)

Score
matching

From scores to samples: Langevin MCMC

231

Scores
sθ(x) ≈ ∇xlog pdata(x)

Follow the score

x̃t+1 = x̃t +
τ
2

sθ(x̃t)

Score
matching

From scores to samples: Langevin MCMC

232

Scores
sθ(x) ≈ ∇xlog pdata(x)

Follow the score

x̃t+1 = x̃t +
τ
2

sθ(x̃t)

Score
matching

From scores to samples: Langevin MCMC

232

Scores
sθ(x) ≈ ∇xlog pdata(x)

Follow the score

x̃t+1 = x̃t +
τ
2

sθ(x̃t)

Follow the noisy score

Score
matching

From scores to samples: Langevin MCMC

232

Scores
sθ(x) ≈ ∇xlog pdata(x)

Follow the score

x̃t+1 = x̃t +
τ
2

sθ(x̃t) x̃t+1 = x̃t +
τ
2

sθ(x̃t) + 2τϵ

Follow the noisy score

Score
matching

From scores to samples: Langevin MCMC

232

Scores
sθ(x) ≈ ∇xlog pdata(x)

Follow the score

x̃t+1 = x̃t +
τ
2

sθ(x̃t) x̃t+1 = x̃t +
τ
2

sθ(x̃t) + 2τϵ

Follow the noisy score

ϵ ∼ 𝒩(0,1)

Score
matching

From scores to samples: Langevin MCMC

233

Scores
sθ(x) ≈ ∇xlog pdata(x)

Follow the score

x̃t+1 = x̃t +
τ
2

sθ(x̃t) x̃t+1 = x̃t +
τ
2

sθ(x̃t) + 2τϵ

ϵ ∼ 𝒩(0,1)

Follow the noisy score

Score
matching

Sampling in score-based generative models

234

Data samples Scores New samples
sθ(x) ≈ ∇xlog pdata(x)

Score
matching ?

Sampling in score-based generative models

235

Data samples Scores New samples

Langvein
MCMC

sθ(x) ≈ ∇xlog pdata(x)

Score
matching

• Langevin MCMC process does not work

• We only get noise, and the optimization process get stuck in some local minima

236

Issues with score-based generative modeling

How to fix these issues?

237

Path to diffusion models

Annealed Langevin dynamics to generate samples

238

σ1

Annealed Langevin dynamics to generate samples

239

σ2 σ1

Annealed Langevin dynamics to generate samples

240

σ2 σ1

Annealed Langevin dynamics to generate samples

241

σ2σ3 σ1

Annealed Langevin dynamics to generate samples

242

σ2σ3 σ1

Using multiple noise levels

Annealed Langevin dynamics to generate samples

242

σ2σ3 σ1

⋯

Using multiple noise levels

Path to Diffusion models

243

Data Pure noise

Using multiple noise levels

Using multiple noise levels

244

p0(x)

Data

Using multiple noise levels

244

p0(x)

Data

Using multiple noise levels

244

pT(x)p0(x)

PriorData

Using multiple noise levels

244

pT(x)p0(x)

PriorData

Using multiple noise levels

244

pT(x)p0(x)

PriorData

pt(x)

Using multiple noise levels

244

pT(x)p0(x)

PriorData

pt(x)

Using multiple noise levels

244

pT(x)p0(x)

PriorData

pt(x)

What happens when we have infinite noise levels?

245

From VAEs to Diffusion models

Energy-based models (EBMs)
MCMC methods for EBMs

Variational Autoencoders (VAEs)

Score-based Generative models (SBGMs)
MCMC methods for SBGMs

SDE-based diffusion models

Perturbing data with stochastic processes
SDE-based diffusion models

Perturbing data with stochastic processes

248

pt(x) pT(x)p0(x)

PriorData

Perturbing data with stochastic processes

248

pt(x) pT(x)p0(x)

PriorData

Perturbing data with stochastic processes

248

pt(x) pT(x)p0(x)

PriorData

Perturbing data with stochastic processes

248

pt(x) pT(x)p0(x)

PriorData

Perturbing data with stochastic processes

249

pt(x) pT(x)p0(x)

PriorData

Perturbing data with stochastic processes

249

Stochastic processes
pt(x) pT(x)p0(x)

PriorData

Perturbing data with stochastic processes

249

Stochastic processes
pt(x) pT(x)p0(x)

PriorData

Perturbing data with stochastic processes

249

Stochastic processes
pt(x) pT(x)p0(x)

PriorData

Perturbing data with stochastic processes

249

Stochastic processes
pt(x) pT(x)p0(x)

PriorData

Perturbing data with stochastic processes

249

Stochastic processes

Probability densities

pt(x) pT(x)p0(x)

PriorData

Perturbing data with stochastic processes

249

Stochastic processes

Probability densities

pt(x) pT(x)p0(x)

PriorData

Perturbing data with stochastic processes

249

Stochastic processes

Probability densities

Stochastic differential equation (SDE)
pt(x) pT(x)p0(x)

PriorData

Perturbing data with stochastic processes

249

Stochastic processes

Probability densities

Stochastic differential equation (SDE)

drift

pt(x) pT(x)p0(x)

PriorData

Perturbing data with stochastic processes

249

Stochastic processes

Probability densities

Stochastic differential equation (SDE)

drift randomness

pt(x) pT(x)p0(x)

PriorData

Perturbing data with stochastic processes

249

Stochastic processes

Probability densities

Stochastic differential equation (SDE)

drift randomness

pt(x) pT(x)p0(x)

PriorData

Perturbing data with stochastic processes

249

Stochastic processes

Probability densities

Stochastic differential equation (SDE)

drift randomness

Toy SDE:

pt(x) pT(x)p0(x)

PriorData

Perturbing data with stochastic processes

249

Stochastic processes

Probability densities

Stochastic differential equation (SDE)

drift randomness

Toy SDE:

pt(x) pT(x)p0(x)

PriorData

Generation via reverse stochastic process

250

pt(x) pT(x)p0(x)

PriorData

Generation via reverse stochastic process

250

Forward SDE: (t : 0 → T)

pt(x) pT(x)p0(x)

PriorData

Generation via reverse stochastic process

250

Forward SDE: (t : 0 → T)

pt(x) pT(x)p0(x)

PriorData

Generation via reverse stochastic process

250

Forward SDE: (t : 0 → T)

Reverse SDE: (t : T → 0)

pt(x) pT(x)p0(x)

PriorData

Generation via reverse stochastic process

250

Forward SDE: (t : 0 → T)

Reverse SDE: (t : T → 0)

pt(x) pT(x)p0(x)

PriorData

Generation via reverse stochastic process

250

Forward SDE: (t : 0 → T)

Reverse SDE: (t : T → 0) score function

pt(x) pT(x)p0(x)

PriorData

Generation via reverse stochastic process

250

Forward SDE: (t : 0 → T)

Reverse SDE: (t : T → 0)
Infinitesimal noise in
the reverse time directionscore function

pt(x) pT(x)p0(x)

PriorData

Predictor-Corrector Sampling methods

251

pt(x) pT(x)p0(x)

PriorData

Predictor-Corrector Sampling methods

251

Predictor: Numerical SDE solver (as shown in the previous slide)

pt(x) pT(x)p0(x)

PriorData

Predictor-Corrector Sampling methods

251

Predictor: Numerical SDE solver (as shown in the previous slide)

pt(x) pT(x)p0(x)

PriorData

Predictor-Corrector Sampling methods

251

Predictor: Numerical SDE solver (as shown in the previous slide)

pt(x) pT(x)p0(x)

PriorData

Predictor-Corrector Sampling methods

251

Predictor: Numerical SDE solver (as shown in the previous slide)

pt(x) pT(x)p0(x)

PriorData

Predictor-Corrector Sampling methods

251

Predictor: Numerical SDE solver (as shown in the previous slide)

Corrector: Score-based MCMC (as discussed in score matching)

pt(x) pT(x)p0(x)

PriorData

Predictor-Corrector Sampling methods

251

Predictor: Numerical SDE solver (as shown in the previous slide)

Corrector: Score-based MCMC (as discussed in score matching)

pt(x) pT(x)p0(x)

PriorData

Predictor-Corrector Sampling methods

251

Predictor: Numerical SDE solver (as shown in the previous slide)

Corrector: Score-based MCMC (as discussed in score matching)

pt(x) pT(x)p0(x)

PriorData

Predictor-Corrector Sampling methods

251

Predictor: Numerical SDE solver (as shown in the previous slide)

Corrector: Score-based MCMC (as discussed in score matching)

pt(x) pT(x)p0(x)

PriorData

Predictor-Corrector Sampling methods

251

Predictor: Numerical SDE solver (as shown in the previous slide)

Corrector: Score-based MCMC (as discussed in score matching)

pt(x) pT(x)p0(x)

PriorData

Predictor-Corrector Sampling methods

251

Predictor: Numerical SDE solver (as shown in the previous slide)

Corrector: Score-based MCMC (as discussed in score matching)

pt(x) pT(x)p0(x)

PriorData

Predictor-Corrector Sampling methods

251

Predictor: Numerical SDE solver (as shown in the previous slide)

Corrector: Score-based MCMC (as discussed in score matching)

pt(x) pT(x)p0(x)

PriorData

252

253

Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC (Du et al. 2024)

254

Generative models

Langevin dynamics

Stochastic differential
equations (SDEs)

255

Generative models

Langevin dynamics

Stochastic differential
equations (SDEs)

Physically based rendering

Metropolis Hastings

Langevin Monte Carlo

Hamiltonian Monte Carlo

256

Generative models

Langevin dynamics

Stochastic differential
equations (SDEs)

Physically based rendering

Metropolis Hastings

Langevin Monte Carlo

Hamiltonian Monte Carlo

?

257

Physically based rendering

Metropolis Hastings

Langevin Monte Carlo

Hamiltonian Monte Carlo

Markov chain Monte Carlo

Generative models

Langevin dynamics

Stochastic differential
equations (SDEs)

Future directions

• Improvements in MCMC methods can bring benefits to both the communities

258

Future directions

• Improvements in MCMC methods can bring benefits to both the communities

• We are working on this…

258

Future directions

• Improvements in MCMC methods can bring benefits to both the communities

• We are working on this…

• Can we bring these improvements to generative AI?

258

Future directions

• Improvements in MCMC methods can bring benefits to both the communities

• We are working on this…

• Can we bring these improvements to generative AI?

258

• Can MCMC serves as a link to bring physical accuracy within generative models?

Future directions

• Improvements in MCMC methods can bring benefits to both the communities

• We are working on this…

• Can we bring these improvements to generative AI?

258

• Can MCMC serves as a link to bring physical accuracy within generative models?

• Many applications in architecture, aircraft design needs physical accuracy
before realization in practice

Acknowledgements

259

259

Auto-encoding variational Bayes

259

Auto-encoding variational Bayes

Thank you!
&

Enjoy the rest of the SIGGRAPH Asia!

